A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. | LitMetric

Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.

J Neurobiol

Departamento de Anatomia, Instituto de Ciências Biomédicas, C.C.S. Bl. F, Universidade Federal do Rio de Janeiro, 21941-590, R.J., Brazil.

Published: June 2003

In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.10205DOI Listing

Publication Analysis

Top Keywords

radial glial
8
glial cells
8
transformation astrocytes
8
fetal/perinatal period
8
glial fiber
8
fiber morphology
8
radial cells
8
early pattern
8
pattern astrocyte
8
astrocyte distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!