Recent studies have shown that nondividing primary cells, such as hepatocytes, can be efficiently transduced in vitro by human immunodeficiency virus-based lentivirus vectors. Other studies have reported that, under certain conditions, the liver can be repopulated with transplanted hepatocytes. In the present study, we combined these procedures to develop a model system for ex vivo gene therapy by repopulating rat livers with hepatocytes and hepatoblasts transduced with a lentivirus vector expressing a reporter gene, green fluorescent protein (GFP). Long-term GFP expression in vivo (up to 4 months) was achieved when the transgene was driven by the liver-specific albumin enhancer/promoter but was silenced when the cytomegalovirus (CMV) enhancer/promoter was used. Transplanted cells were massively amplified ( approximately 10 cell doublings) under the influence of retrorsine/partial hepatectomy, and both repopulation and continued transgene expression in individual cells were documented by dual expression of a cell transplantation marker, dipeptidyl peptidase IV (DPPIV), and GFP. In this system, maintenance or expansion of the transplanted cells did not depend on expression of the transgene, establishing that positive selection is not required to maintain transgene expression following multiple divisions of transplanted, lentivirus-transduced hepatic cells. In conclusion, fetal hepatoblasts (liver stem/progenitor cells) can serve as efficient vehicles for ex vivo gene therapy and suggest that liver-based genetic disorders that do not shorten hepatocyte longevity or cause liver damage, such as phenylketonuria, hyperbilirubinemias, familial hypercholesterolemia, primary oxalosis, and factor IX deficiency, among others, might be amenable to treatment by this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1053/jhep.2003.50183DOI Listing

Publication Analysis

Top Keywords

fetal hepatoblasts
8
vectors studies
8
vivo gene
8
gene therapy
8
transplanted cells
8
transgene expression
8
cells
6
expression
5
repopulation rat
4
liver
4

Similar Publications

Spatiotemporal dynamics of fetal liver hematopoietic niches.

J Exp Med

February 2025

Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.

Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.

View Article and Find Full Text PDF

Background: Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.

Methods: We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation.

View Article and Find Full Text PDF
Article Synopsis
  • Human mesenchymal stem cells from umbilical cord (hUCM-MSCs) show potential for tissue regeneration, but efficient differentiation methods for these cells into specific types like hepatocyte-like cells (HLCs) need improvement.
  • Researchers utilized a ROCK inhibitor called fasudil and gelatin to enhance the differentiation efficiency of hUCM-MSCs into HLCs, while monitoring gene expression and organelle function throughout the process.
  • The study found that fasudil promoted endoderm gene expression but excessive lipid droplet formation hindered differentiation; using high-viscosity gelatin minimized lipid droplets and enhanced mitochondrial function, leading to better outcomes in forming hepatoblasts.
View Article and Find Full Text PDF

Previous studies of hematopoietic stem cells (HSCs) primarily focused on single cell-based niche models, yielding fruitful but conflicting findings . Here we report our investigation on the fetal liver (FL) as the primary fetal hematopoietic site using spatial transcriptomics. Our study reveals two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche.

View Article and Find Full Text PDF

Transition of signal requirement in hematopoietic stem cell development from hemogenic endothelial cells.

Proc Natl Acad Sci U S A

July 2024

Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.

Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) in vivo during mouse embryogenesis. When cultured in vitro, cells from the embryo phenotypically defined as pre-HSC-I and pre-HSC-II have the potential to differentiate into HSCs. However, minimal factors required for HSC induction from HECs have not yet been determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!