In the exocrine organs, breast and pancreas, colloid carcinoma (CC, pure mucinous carcinoma), characterized by well-circumscribed lakes of mucin that contain scanty, detached malignant cells, has a significantly better prognosis than conventional ductal carcinomas (DCs). It has been speculated by us and others that an inverse polarization of cells may be responsible for the accumulation of extracellular mucin. Another possibility is that this mucin is biochemically and biologically distinct from the mucin secreted by the conventional carcinomas of these organs. This study was undertaken to investigate these two hypotheses: 1) To test whether there is indeed an alteration in cell polarity in CC. Immunohistochemical stains for luminal surface glycoproteins (carcinoembryonic antigen in pancreas and MUC1 in breast) were performed in 18 pancreatic and 30 mammary CCs and compared with the expression pattern in DCs (37 pancreatic and 47 mammary) and normal ducts. The results disclosed that these glycoproteins were expressed predominantly in the stroma-facing surfaces of CC cells, in contrast to the DCs, in which the expression was either on the luminal surface (in well-differentiated areas) or dispersed throughout the cell, intracytoplasmic in the poorly differentiated areas. Ultrastructural examination performed on 10 breast and two pancreatic CCs showed the condensation of mucigen granules (generally underlying an apical-type cell membrane) in the stroma-facing surface in all cases. In contrast, in the DCs (five pancreatic and five mammary), no clustering of mucigen granules was identified in the cytoplasm facing the stroma in any of the cases. Furthermore, no external lamina or basement membrane was detected in any of the CCs, whereas in the DCs, a distinct (in 3 of 10) or discontinuous (4 of 10) external lamina separated the tumor cells from the stroma. 2) To determine the expression frequency of MUC2 in CCs and to compare it with that in DCs and normal tissue, immunohistochemical stains with MUC2 (clone ccp58) were performed. MUC2 expression was detected in 18 of 18 pancreatic and 30 of 30 breast CCs and was exceedingly rare in DCs (1 of 136 pancreatic DC and 3 of 47 mammary, p <0.0001 in both organs). No labeling was detected in normal ducts. In conclusion, it appears that coupling of two factors is important for the distinctive morphologic characteristics and slow growth of CCs: The first one is the alteration in cell orientation as evidenced by the direction of surface glycoproteins and secretory organelles to the stroma-facing surface of the cells and the disruption of cell-stroma interaction as manifested by lack of basal lamina formation. Apparently, this altered polarity allows the CC cells to secrete the mucin toward the stroma. The mucin produced, MUC2 (also called gel-forming mucin), is highly specific for CC and is known to form strong bonds with the stroma, and also was found recently to have tumor suppressor activity. This distinctive mucin, accumulated in the stroma surrounding the CC cells, may act as a containing factor, slackening the spread of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000478-200305000-00002 | DOI Listing |
World J Clin Oncol
January 2025
Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China.
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.
Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.
View Article and Find Full Text PDFAME Case Rep
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Fibromatosis of the breast, also known as desmoid-type fibromatosis (DTF), is a rare tumor marked by the development of non-metastatic, locally aggressive tumors in breast tissue. It represents only 0.2% of all breast tumors.
View Article and Find Full Text PDFOncol Res
January 2025
College of Food Sciences, Al-Qasim Green University, Babylon, Iraq.
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!