Beta-hydroxyisovalerylshikonin (beta-HIVS), a compound isolated from Lithospermium radix, most efficiently induced cell-death in two lines of lung cancer cells, namely, NCI-H522 and DMS114, whereas shikonin was effective against a wide variety of tumor cell lines. During our studies of the mechanism of action of beta-HIVS on tumor cells, we found that this compound inhibited protein tyrosine kinase (PTK) activity. The tyrosine kinase activities of a receptor for EGF (EGFR) and v-Src were strongly inhibited and that of KDR/Flk-1 was weakly inhibited by beta-HIVS. The inhibition by beta-HIVS of the activities of EGFR and v-Src was much stronger than that by shikonin. The IC50 values of beta-HIVS for EGFR and v-Src were approximately 0.7 microM and 1 microM, respectively. Moreover, the inhibition of v-Src by beta-HIVS was non-competitive with respect to ATP. These results strongly suggest that the action of beta-HIVS, as well as that of shikonin, involves the inhibition of PTK, and they also suggest the possibility of producing a novel group of PTK inhibitors based on shikonin as the parent compound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927115 | PMC |
http://dx.doi.org/10.1111/j.1349-7006.2002.tb01341.x | DOI Listing |
Molecules
November 2023
Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy.
Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERβ), although with a lower affinity than that of estradiol.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
February 2019
Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, California 94305-5324, USA.
Proteins containing tyrosine kinase activity play critical roles in cancer signaling. Intracellular SRC-family kinases relay growth signals from numerous cell surface receptors and can be constitutively activated by oncogenic mutations, as can transmembrane growth factor receptors such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) that signal via their tyrosine kinase activity. In this excerpt from his forthcoming book on the history of cancer research, Joe Lipsick looks back at the discovery of tyrosine kinases and the demonstration that the V-SRC protein encoded by Rous sarcoma virus was a tyrosine kinase.
View Article and Find Full Text PDFJ Oral Pathol Med
October 2017
Department of ENT - Head and Neck Surgery, County Council of Östergötland, Linköping, Sweden.
Background: The aims of this study were to validate in vitro drug sensitivity testing of head and neck squamous cell carcinoma (HNSCC) cell lines in an in vivo xenograft model and to identify treatment-induced changes in the epidermal growth factor receptor (EGFR) signaling pathway that could be used as markers for cetuximab treatment response.
Materials And Methods: The in vitro and in vivo cetuximab sensitivity of two HNSCC cell lines, UT-SCC-14 and UT-SCC-45, was assessed using a crystal violet assay and xenografts in nude mice, respectively. The expression of EGFR, phosphorylated EGFR (pEGFR), phosphorylated Src (pSrc), and Ki-67 was investigated by immunohistochemistry.
Oncogene
May 2017
Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
Pancreatic ductal adenocarcinoma (PDAC) cells usually overexpress the epidermal growth factor receptor (EGFR); however, most are resistant to the anti-EGFR monoclonal antibody, cetuximab. In this study, we report that the molecular mechanism of resistance to cetuximab in PDAC cells is mediated by the overexpression of active integrin β1 with downstream Src-Akt activation; this triggers an EGFR ligand-independent proliferation signaling, bypassing EGFR-blocking effect. Knockdown of integrin β1 or inhibition of Src or Akt sensitized cetuximab-resistant (Ctx) PDAC cells to cetuximab.
View Article and Find Full Text PDFExtracellular vesicles (EVs), including exosomes, are a subject of intense interest due to their emission by cancer cells and role in intercellular communication. Earlier reports suggested that oncogenes, such as RAS, MET or EGFR, drive cellular vesiculation. Interestingly, these oncogenes may also traffic between cells using the EV-mediated emission and uptake processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!