QT dispersion is thought to reflect a regional difference in repolarization process although QT interval is composed of depolarization and repolarization. This study was designed to investigate the effect of depolarization and repolarization on QT dispersion in hypertrophic cardiomyopathy. Standard 12-lead ECG was recorded in 70 hypertrophic cardiomyopathy patients with anteroseptal wall hypertrophy (HC-As), 8 patients with lateral wall hypertrophy (HC-L), 8 patients with diffuse hypertrophy (HC-D), and 46 normal controls. QRS, JTc, maximum and minimum QTc, and QTc dispersion were compared. The maximum QTc was greater in HC-As and HC-L than in the control; the minimum QTc was similar in all 3 groups; consequently, QTc dispersion was greater in HC-As and HC-L. In HC-D, the maximum QTc and the minimum QTc were greater than the control, which produced QTc dispersion similar to that in the control. JTc did not differ among 4 groups. In hypertrophic cardiomyopathy, both QTc and QRS duration were increased in the leads coinciding with the left ventricular portion of localized hypertrophy. We conclude that QTc dispersion depended on the heterogeneity of QRS duration or depolarization rather than repolarization, which in fact may be ascribed to the regionally different hypertrophy of the left ventricle in hypertrophic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9592.2003.t01-1-00145.xDOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
20
qtc dispersion
16
depolarization repolarization
12
minimum qtc
12
qtc
10
wall hypertrophy
8
maximum qtc
8
qtc greater
8
greater hc-as
8
hc-as hc-l
8

Similar Publications

Background: High-intensity physical activity has traditionally been discouraged in patients with hypertrophic cardiomyopathy due to concerns about triggering sudden cardiac death. However, current guidelines adopt a more liberal stance, and evidence on risk factors for exercise-related sudden cardiac death remains limited. This study investigated the clinical, morphological and genetic factors associated with high-intensity physical activity-related sudden cardiac death in hypertrophic cardiomyopathy.

View Article and Find Full Text PDF

Background: Alcohol septal ablation (ASA) is used to treat drug-refractory hypertrophic obstructive cardiomyopathy (HOCM). Intraprocedural echocardiography is essential for identifying the septal area perfused by each septal branch; however, its role in determining the procedural endpoint of ASA remains unclear. This retrospective study aimed to evaluate the impact of intraprocedural echocardiographic findings on clinical outcomes and left ventricular pressure gradient (LVPG) after ASA.

View Article and Find Full Text PDF

Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy.

Circ Heart Fail

January 2025

Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).

Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.

Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.

View Article and Find Full Text PDF

NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction.

Circ Res

January 2025

Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Advances in genetic diagnosis and therapy of hereditary heart disease: a bibliometric review from 2004 to 2024.

Front Med (Lausanne)

January 2025

Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.

Hereditary heart disease (HHD) is a series of cardiac disorders associated with monogenic or polygenic abnormalities and is one of the leading causes of sudden death, particularly in young adults. The updated European Cardiology guideline for cardiomyopathies provides the first comprehensive summary of genotyping, imaging, and therapy recommendations for inherited cardiomyopathies, but still lacks a comprehensive discussion of research advances and future trends in genetic diagnosis and therapy of HHD. Our research aims to fill this gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!