Antioxidant vitamins reduce cardiac oxidative stress and cardiomyocyte apoptosis produced by exogenous norepinephrine (NE) and attenuate cardiac dysfunction in animals with pacing-induced congestive heart failure (CHF). This study was carried out to determine whether the mitogen-activated protein kinase (MAPK) signal transduction pathways are involved in oxidative stress-induced myocyte apoptosis. Rabbits with rapid pacing-induced CHF and sham operation were randomized to receive either a combination of antioxidant vitamins (beta-carotene, ascorbic acid, and alpha-tocopherol), alpha-tocopherol alone, or placebo for 8 wk. Compared with sham-operated animals, CHF animals exhibited increased oxidative stress as evidenced by decreased myocardial reduced-to-oxidized glutathione (GSH/GSSG) ratio (27 +/- 7 vs. 143 +/- 24, P < 0.05), myocyte apoptosis (77 +/- 18 vs. 17 +/- 4 apoptotic nuclei/10,000 cardiomyocytes, P < 0.05), increased total and phosphorylated c-Jun NH2-terminal protein kinase (p-JNK; 1.95 +/- 0.14 vs. 1.04 +/- 0.04 arbitrary units, P < 0.05) and phosphorylated p38 kinase (p-p38), and decreased phosphorylated extracellular signal-regulated kinase (p-ERK). Administration of antioxidant vitamins and alpha-tocopherol attenuated oxidative stress, myocyte apoptosis, and cardiac dysfunction, with reversal of the changes of total JNK, p-JNK, and p-ERK in CHF. Furthermore, because NE infusion produced changes of JNK, p-p38, and p-ERK similar to those in CHF, we conclude that NE may play an important role in the production of oxidative stress, MAPK activation, and myocyte apoptosis in CHF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00015.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!