SNP and haplotype variation in the human genome.

Mutat Res

Genaissance Pharmaceuticals, Five Science Park, New Haven, CT 065511, USA.

Published: May 2003

We have surveyed and summarized several aspects of DNA variability among humans. The variation described is the result of mutation followed by a combination of drift, migration and selection bringing the frequencies high enough to be observed. This paper describes what we have learned about how DNA variability differs among genes and populations. We sequenced functional regions of a set of 3950 genes. DNA was sampled from 82 unrelated humans: 20 African-Americans, 20 East Asians, 21 Caucasians, 18 Hispanic-Latinos and 3 Native Americans. Different aspects of variability showed a great deal of concordance. In particular, we studied patterns of single nucleotide polymorphism (SNP) allele and haplotype sharing among the four, large sample populations. We also examined how linkage disequilibrium (LD) between SNPs relates to physical distance in the different populations. It is clear from our findings that while many variants are common to all populations, many others have a more restricted distribution. Research that attempts to find genetic variants that explain phenotypic variants must be careful in their choice of study population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0027-5107(03)00014-9DOI Listing

Publication Analysis

Top Keywords

dna variability
8
snp haplotype
4
haplotype variation
4
variation human
4
human genome
4
genome surveyed
4
surveyed summarized
4
summarized aspects
4
aspects dna
4
variability humans
4

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.

View Article and Find Full Text PDF

Asthma is a common complex disease with susceptibility defined through an interplay of genetic and environmental factors. Responsiveness to asthma treatment varies between individuals and is largely determined by genetic variability. The polygenic score (PGS) approach enables an individual risk of asthma and respective response to drug therapy.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3A) in AML, we here investigate the common characteristics of DNMT3A AML methylomes through computational analyses. We present that methylomes of DNMT3A AMLs are considerably different from those of DNMT3A AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!