A selection of herbaceous plants representing the ground flora around a typical chemical installation in the UK was exposed continuously for 7 weeks to a mixture of six VOCs (acetone, acetonitrile, dichloromethane, ethanol, methyl t-butyl ether and toluene) in open-top chambers. Exposure concentrations were based on predictions of atmospheric dispersion from a single source, at a distance of approximately 2 km. The effects of continuous exposure, representing a worst-case, were measured in terms of uncontrolled water loss from leaves, leaf wettability, chlorophyll content and fluorescence, dry matter production and detailed observations of changes in plant growth and phenology. There were significant effects of VOC exposure on seed production, leaf water content and photosynthetic efficiency in some plant species. Such effects may be detectable in vegetation close to major industrial point sources of VOCs, or as a result of an accidental release of material during manufacture or transport. Some of the species tested e.g. birdsfoot trefoil (Lotus corniculatus L.) seem to be promising as potential bioindicators for VOCs, but there may be other even more sensitive species waiting to be discovered. However, the most obvious and conveniently measured response to VOCexposure in the birdsfoot trefoil (premature senescence i.e. advanced timing of seed pod production) could easily be confused in the field with climatic influences. It is also uncertain at this stage whether any of the effects observed would lead to longer term ecological changes in natural plant communities, through biased competition between sensitive and more tolerant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0269-7491(02)00464-5 | DOI Listing |
Front Plant Sci
December 2024
Qilu Normal University, School of Geography and Tourism, Jinan, Shandong, China.
Aims: Understanding the response of herbaceous plants to habitat changes and the mechanisms of vegetation succession is crucial to the theoretical foundation of the conservation of local vegetation.
Methods: Plots were established at elevations of 1900-2200m, 2200-2500m, and 2500-2800m on both shady and sunny slopes. Four statistical methods 2×2 contingency table χ-test, Spearman's rank correlation coefficient, AC joint coefficient, 17 and Ochiai Index, were employed to analyze the species composition and interspecific associations within each elevation band and aspect.
Front Plant Sci
December 2024
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.
Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).
Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.
Environ Monit Assess
December 2024
Department of Botany, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, J&K, 180006, India.
The broad-scale inventories of alien species reveal macroecological patterns, but these often fall short in guiding local-level management strategies. Local authorities, tasked with on-the-ground management, require precise knowledge of the occurrence of invasive species tailored to their jurisdictional boundaries. What proves critical at the local scale may not hold the same significance at national or regional levels.
View Article and Find Full Text PDFPlant Dis
December 2024
Honghe University, College of Biological and Agricultural Sciences, Mengzi, Yunnan, China;
The Asteraceae family plant Erigeron breviscapus (Vant.) Hand.-Mazz.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia.
A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!