The synthesis of tetracyclic quinones 10a,b, 14a,b, 19a,b and 20a,b is described. The preparations involve regioselective Diels-Alder reactions via trapping the thiazole o-quinodimethane 9 with several benzofuranquinones and benzothiophenequinones. The structure of the regioisomers was assigned through 2D NMR 1H-13C HMBC experiments performed on 10a and 14a. Compounds 10a,b, 14a as well as phenol 1 and the starting quinones 2, 5, 7 and 15 are evaluated against Leishmania sp., Toxoplasma gondii and THP-1 cells. Almost all the tested compounds exhibit significant antiprotozoal activities with lower cytotoxicities than the reference compounds. Among them, quinones 2 and 14a possess the best activities towards L. donovani and T. gondii with the lowest toxicities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0968-0896(03)00122-6 | DOI Listing |
Front Cell Infect Microbiol
January 2025
National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
Introduction: A continuing challenge for malaria control is the ability of to develop resistance to antimalarial drugs. Members within the transcription factor family AP2 regulate the growth and development of the parasite, and are also thought to be involved in unclear aspects of drug resistance. Here we screened for single nucleotide polymorphisms (SNPs) within the AP2 family and identified 6 non-synonymous mutations within AP2-06B (PF3D7_0613800), with allele frequencies greater than 0.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.
Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N-methyladenosine (mA) writer complex and its impact on the methylation of RNA.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
Emerging evidence has shown that the N-methyladenosine (mA) modification of RNA plays key roles in tumorigenesis and the progression of various cancers. However, the potential roles of the mA modification of long noncoding RNAs (lncRNAs) in pancreatic cancer (PaCa) are still unknown. To analyze the prognostic value of mA-related lncRNAs in PaCa, an m6A-related lncRNA signature was constructed as a risk model via Pearson's correlation and univariate Cox regression analyses in The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
Leishmaniasis is a parasitic disease caused by protozoan organisms belonging to the Leishmania genus, affecting many individuals worldwide, with the burden surpassing one million cases. This disease leads to considerable morbidity and mortality, predominantly within tropical and subtropical regions. The current therapeutic options for leishmaniasis are far from ideal, as they fail to achieve a level of efficacy that can be deemed universally effective.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.
Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!