Using slot-blot and fluorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum species we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini. An analysis of related genera Vestia and Sessea indicates that they too lack the Arabidopsis-type telomere, and the sequences were lost in the common ancestor of these genera. We found that the Cestrum species investigated had particularly large mean chromosome sizes. We discuss whether this is a consequence of alternative telomere end maintenance systems.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.2003.01731.xDOI Listing

Publication Analysis

Top Keywords

genera vestia
8
vestia sessea
8
chromosome termini
8
cestrum species
8
species investigated
8
absence arabidopsis-type
4
arabidopsis-type telomeres
4
telomeres cestrum
4
cestrum closely
4
closely genera
4

Similar Publications

The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.

View Article and Find Full Text PDF

Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins.

Cytogenet Genome Res

March 2009

Institute of Biophysics, Czech Academy of Sciences, Masaryk University, Brno, Czech Republic.

While most Solanaceae genera (e.g.Solanum, Nicotiana) possess Arabidopsis-type telomeres of (TTTAGGG)n maintained by telomerase, the genera Cestrum, Vestia and Sessea (Cestrum group) lack these telomeres.

View Article and Find Full Text PDF

The genus Cestrumin the Solanaceae family is unusual in lacking Arabidopsis-type telomeres (TTTAGGG)n, although short interstitial telomeric sequences (ITSs) occur scattered throughout the genome in both orientations. To isolate candidate telomeric sequences in Cestrum we assumed that some of the ITSs were residues of the original telomeres and that they may still be located in the vicinity of present-day telomeres. Three sequence types associated with ITSs were cloned and characterized; these were termed NA3G, BR23 and A/T-rich minisatellite.

View Article and Find Full Text PDF

Using slot-blot and fluorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum species we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!