Sensitive, accurate, and precise assays are described to determine BNP7787 (disodium 2,2'-dithio-bis-ethane sulfonate) and its metabolite mesna (sodium 2-mercaptoethane sulfonate) simultaneously in plasma and tissue by micro-high-performance liquid chromatography (HPLC) with dual electrochemical detection. After separation of BNP7787 and mesna by micro-HPLC, the disulfide BNP7787 was reduced to mesna by a reactor cell with a glassy carbon working electrode (-1.6 V versus Hy-REF). At the second electrode, which consisted of a gold wall-jet electrode, the mesna generated from BNP7787 and the mesna already present in the samples were detected (+0.85 V versus Ag/AgCl). The lower limit of quantification (LLQ) of both compounds was 3 microM in plasma and 20 nmol/g in tissue. The dynamic range of the assay in plasma was 3-120 microM for mesna and 15-1200 microM for BNP7787. In tissue, the dynamic range was 20-2000 nmol/g for both compounds. The recovery of mesna from plasma and tissue ranged from 61.4 to 90.5% and 82.7 to 90.2%, respectively, and seemed to be concentration dependent. The recovery of BNP7787 from plasma and tissue was complete (i.e., 101.5 and 96.4%, respectively). The within- and between-day accuracy and precision for the plasma and tissue assay were within 14 and 7%, respectively. The utility of the assay was shown by determination of the stability of mesna and BNP7787 in a kidney sample of a rat and by analysis of plasma samples obtained from a patient receiving 18.4 g/m(2) BNP7787 as a 15-min intravenous infusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.10363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!