RNA editing in hornwort chloroplasts makes more than half the genes functional.

Nucleic Acids Res

Graduate School of Science and Engineering, Shizuoka University, Oya 836, 422-8529 Shizuoka, Japan.

Published: May 2003

RNA editing in chloroplasts alters the RNA sequence by converting C-to-U or U-to-C at a specific site. During the study of the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae, RNA editing events have been systematically investigated. A total of 509 C-to-U and 433 U-to-C conversions are identified in the transcripts of 68 genes and eight ORFs. No RNA editing is seen in any of the rRNA but one tRNA suffered a C-to-U conversion at an anticodon. All nonsense codons in 52 protein-coding genes and seven ORFs are removed in the transcripts by U-to-C conversions, and five initiation and three termination codons are created by C-to-U conversions. RNA editing in intron sequence suggests that editing can precede intercistronic processing. The sequence complementary to the edited site is proposed as a distant cis-recognition element.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154213PMC
http://dx.doi.org/10.1093/nar/gkg327DOI Listing

Publication Analysis

Top Keywords

rna editing
20
u-to-c conversions
8
genes orfs
8
rna
6
editing
5
editing hornwort
4
hornwort chloroplasts
4
chloroplasts half
4
half genes
4
genes functional
4

Similar Publications

Targeting on the PI3K/mTOR: a potential treatment strategy for clear cell ovarian carcinoma.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.

Purpose: Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC.

Methods: In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects.

View Article and Find Full Text PDF

To address a wide range of genetic diseases, genome editing tools that can achieve targeted delivery of large genes without causing double-strand breaks (DSBs) or requiring DNA templates are necessary. Here, we introduce CRISPR-Enabled Autonomous Transposable Element (CREATE), a genome editing system that combines the programmability and precision of CRISPR/Cas9 with the RNA-mediated gene insertion capabilities of the human LINE-1 (L1) element. CREATE employs a modified L1 mRNA to carry a payload gene, and a Cas9 nickase to facilitate targeted editing by L1-mediated reverse transcription and integration without relying on DSBs or DNA templates.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.

View Article and Find Full Text PDF

Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in .

ACS Synth Biol

January 2025

Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.

The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.

View Article and Find Full Text PDF

A CRISPR view on genetic screens in Toxoplasma gondii.

Curr Opin Microbiol

January 2025

Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal. Electronic address:

Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!