Sequence-specific binding to telomeric DNA by CEH-37, a homeodomain protein in the nematode Caenorhabditis elegans.

J Biol Chem

National Research Laboratory and the Molecular Aging Research Center, Department of Biology, Yonsei University, 134 Shinchon, Seodaemun-ku, Seoul 120-749, Korea.

Published: July 2003

Caenorhabditis elegans can serve as a model system to study telomere functions due to its similarity to higher organisms in telomere structures. We report here the identification of the nematode homeodomain protein CEH-37 as a telomere-binding protein using a yeast one-hybrid screen. The predicted three-dimensional model of the homeodomain of CEH-37, which has a typical helix-loop-helix structure, was similar to that of the Myb domain of known telomere-binding proteins, which is also a helix-loop-helix protein, despite little amino acid sequence similarity. We demonstrated the specific binding of CEH-37 to the nematode telomere sequences in vitro by competition assays. We determined that CEH-37 binding required at least 1.5 repeats of TTAGGC and that the core sequence for binding was GGCTTA. We found that CEH-37 had an ability to bend telomere sequence-containing DNA, which is the case for other known telomere-binding proteins such as TRF1 and RAP1, indicating that CEH-37 may be involved in establishing or maintaining a secondary structure of the telomeres in vivo. We also demonstrated that CEH-37 was primarily co-localized to the chromosome ends in vivo, indicating that CEH-37 may play roles in telomere functions. Consistent with this, a ceh-37 mutation resulting in a truncated protein caused a weak high incidence of male phenotype, which may have been caused by chromosome instability. The identification of CEH-37 as a telomere-binding protein may represent an evolutionary conservation of telomere-binding proteins in terms of tertiary protein structure rather than primary amino acid sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M302192200DOI Listing

Publication Analysis

Top Keywords

telomere-binding proteins
12
ceh-37
11
homeodomain protein
8
caenorhabditis elegans
8
telomere functions
8
ceh-37 telomere-binding
8
telomere-binding protein
8
amino acid
8
acid sequence
8
indicating ceh-37
8

Similar Publications

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

In most Eukaryota, telomeres are protected by the CST complex, composed of CTC1, STN1 and TEN1. In Drosophila, instead, another complex is present, composed of Modigliani, Tea and Verrocchio. We performed a search for STN1 orthologs in Arthropoda, in order to verify if Verrocchio can be considered as such.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!