Astrocytes located in two distinct regions of midbrain differ in their neuritic growth support abilities. Midbrain neurons cultured onto astrocyte monolayers from the lateral (L) region develop long and branched neurites while neurons cultured onto astrocyte monolayers from the medial (M) region develop short or no neurites. The extracellular matrix of these astrocytes has an important role in promoting or inhibiting the growth of these neurons. Differences on the compartmental distribution, as well as on the concentration of GAGs of L and M astrocytes, may be related to their differential capacity of supporting neuritic growth. Indeed, enzymatic digestion of heparan sulfate (HS) and chondroitin sulfate (CS) chains also pointed to an important function for GAGs on axon navigation. In order to better characterize the role of CS on the growth of midbrain neurites, we treated L and M astrocyte monolayers with 1 mM of beta-D-xyloside. Under these conditions, astrocytes oversynthesized and secreted CS protein-free chains to the culture medium. M astrocytes had a significant reduction in their neuritic growth-inhibiting ability after xyloside treatment, suggesting a promoting role for soluble CS in neuritic growth. Chondroitin 4-sulfate (CS-4) added in different concentrations to M astrocyte cultures turned this glia into a permissive substrate, acting in a linear way as far as the largest neurite was concerned. However, a U-shaped dose-effect curve on neurite growth resulted from the similar treatment of L astrocytes. These results suggest that glial CS-4 could be involved in the neurite growth modulating properties of midbrain neurons in a complex concentration-dependent way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-3806(03)00036-1 | DOI Listing |
Adv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFSci Rep
January 2025
Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:
Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.
View Article and Find Full Text PDFEndocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan.
Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!