Not much is known of the topography of galanin expression in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei neurons in colchicine (an axoplasmic inhibitor)-untreated animals. Insight into the biological implication(s) of galanin expression in the PVN and SON will depend, at least in part, on the nature of its distribution in colchicine-untreated animals. In this study therefore, the topographical distribution of galaninergic profiles was examined in the PVN and SON of colchicine-untreated rats. Staining in the parvocellular PVN (PVN(p)) was predominantly as varicose thin galanin fiber processes while the magnocellular PVN (PVN(m)) contained large cell soma and fiber processes. The relative fiber density was higher in the anterior, periventricular and medial PVN(p) than in the dorsal, lateral and posterior subdivisions. Large-sized cells and thick fibers were limited to the posterior PVN(m) while the anterior and medial PVN(m) contained varicose profiles. Light- and intensely-stained galanin-positive cells as well as large- and small-diameter (varicose or non-varicose) fibers were observed in the SON. The large and thin fibers exhibit preferential ventral and dorsal distribution, respectively. Together with the complexity of specific afferent and efferent connections within the PVN and SON, these observations underscore heterogeneous galanin expression and raise potential implications for understanding the biological role of galanin by physiologically challenging stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(03)02524-1 | DOI Listing |
Bioessays
December 2024
Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
Neuropeptides are key modulators of adult neurocircuits, balancing their sensitivity to both excitation and inhibition, and fine-tuning fast neurotransmitter action under physiological conditions. Here, we reason that transient increases in neuropeptide availability and action exist during brain development for synapse maturation, selection, and maintenance. We discuss fundamental concepts of neuropeptide signaling at G protein-coupled receptors (GPCRs), with a particular focus on how signaling at neuropeptide GPCRs could underpin neuronal morphogenesis.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is one of the most common diseases affecting millions of people worldwide. The use of existing antidepressants in many cases does not allow achieving stable remission, probably due to insufficient understanding of pathological mechanisms. This indicates the need for the development of more effective drugs based on in-depth understanding of MDD's pathophysiology.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.
Kisspeptin and galanin-like peptide (GALP) neurons in the hypothalamic arcuate nucleus (ARC) are involved in gonadotropin-releasing hormone (GnRH) neuron-mediated pulsatile luteinizing hormone (LH) secretion. Zucker fatty (ZF) rats display a leptin receptor gene abnormality and suppressed pulsatile LH secretion. ZF rats reportedly exhibit low hypothalamic GALP and kisspeptin expression, and GALP administration induces LH release in ZF rats.
View Article and Find Full Text PDFEndocrinology
October 2024
Institute of Marine & Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA.
GnRH governs reproduction by regulating pituitary gonadotropins. Unlike most vertebrates, gnrh-/- zebrafish are fertile. To elucidate the role of the hypophysiotropic-Gnrh3 and other mechanisms regulating pituitary gonadotropes, we profiled the gene expression of all individual pituitary cells of wild-type and gnrh3-/- adult female zebrafish.
View Article and Find Full Text PDFGen Comp Endocrinol
December 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!