Alphavirus replicon particles are being exploited for a variety of purposes both in vitro as gene expression vectors, and in vivo as vaccines or gene therapy vectors. There is a need for a simple and universal method of titration of replicon particles that is independent of expression of the foreign protein. We devised a method that uses modified vaccinia virus Ankara (MVA) as an indicator virus, to deliver a Venezuelan equine encephalitis virus (VEE) defective helper RNA encoding green fluorescent protein (GFP). Co-infection of cells with the MVA-based indicator and Venezuelan equine encephalitis virus replicon particles (VRP) results in expression of the GFP gene. VRP titer is readily determined by counting fluorescent cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-0934(03)00063-6DOI Listing

Publication Analysis

Top Keywords

replicon particles
12
alphavirus replicon
8
venezuelan equine
8
equine encephalitis
8
encephalitis virus
8
method alphavirus
4
replicon
4
replicon particle
4
particle titration
4
titration based
4

Similar Publications

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Reverse Genetics System for Crimean-Congo Hemorrhagic Fever Virus.

Methods Mol Biol

December 2024

Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, USA.

Reverse genetic systems are powerful tools in molecular virology that allow the generation of infectious recombinant virus and the manipulation of viral genomes. Reverse genetic systems enable the incorporation of reporter genes, facilitating many virological assays, including high-throughput screening. Additionally, reverse genetic systems can be used to introduce targeted mutations into the viral genome, allowing investigations of viral genetic elements and protein functions in virus pathogenesis and biology.

View Article and Find Full Text PDF

Advancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals.

View Article and Find Full Text PDF

Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents.

Viruses

November 2024

PanTherapeutics, CH1095 Lutry, Switzerland.

Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications for different cancers. Point mutations in the non-structural alphaviral replicase genes have generated enhanced transgene expression and created temperature-sensitive expression vectors.

View Article and Find Full Text PDF

: Since its emergence in 2019, the rapid spread of SARS-CoV-2 led to the global pandemic. Recent large-scale dengue fever outbreaks overlapped with the COVID-19 pandemic, leading to increased cases of co-infection and posing severe public health risks. Accordingly, the development of effective combined SARS-CoV-2 and dengue virus (DENV) vaccines is necessary to control the spread and prevalence of both viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!