A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. | LitMetric

The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), which is considered as the pathogenic agent of many diseases and of aging. We have investigated the role of complex I in superoxide radical production and found by the combined use of specific inhibitors of complex I that the one-electron donor to oxygen in the complex is a redox center located prior to the sites where three different types of Coenzyme Q (CoQ) competitors bind, to be identified with an Fe-S cluster, most probably N2, or possibly an ubisemiquinone intermediate insensitive to all the above inhibitors. Short-chain Coenzyme Q analogs enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analog, idebenone, is particularly effective, raising doubts on its safety as a drug. Cells counteract oxidative stress by antioxidants. CoQ is the only lipophilic antioxidant to be biosynthesized. Exogenous CoQ, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases. The plasma membrane oxidoreductase and DT-diaphorase are two such systems, likewise, they are overexpressed under oxidative stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15353702-0322805-14DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
mitochondrial production
4
oxygen
4
production oxygen
4
oxygen radical
4
radical species
4
species role
4
role coenzyme
4
coenzyme antioxidant
4
antioxidant mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!