Vascular endothelial growth factor (VEGF), a major factor mediating endothelial cell survival, migration, and proliferation during angiogenesis, is expressed as five splice variants (121, 145, 165, 189, and 206 aminoacids) encoded by a single gene. Although the three shorter isoforms are mainly diffusible, the two longer ones are sequestered in cell membranes after secretion. However, their potential role as true components of the extracellular matrix has not been investigated. We determined that endothelial cells could adhere and spread on VEGF189 and VEGF165, but not on VEGF121. Adhesion was mediated by the alpha3beta1 and alpha(v)beta3 integrins and other alpha(v) integrins but not by the cognate VEGF receptors. Cells migrated on VEGF165 and VEGF189 and displayed a stellate morphology with numerous lamellopodia and FAK staining but no actin stress fibers. Tumstatin, an antiangiogenic peptide that interacts with the alpha(v)beta3 integrin, could inhibit adhesion on VEGF, and this effect was potentiated by anti-alpha(v)beta3 blocking antibody. Immobilized VEGF almost totally abolished endothelial cell apoptosis through interactions with integrins. The inhibition of alpha(v)beta3 engagement with immobilized VEGF by tumstatin inhibited most of its survival activity. We have thus determined a new VEGF receptor-independent role for immobilized VEGF in supporting cell adhesion and survival through interactions with integrins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.02-0691fje | DOI Listing |
Metabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.
Purpose: The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies.
Methods: A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization.
Neurochem Res
January 2025
Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Background And Purpose: The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!