A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

N-Acetylcysteine improves the disturbed thiol redox balance after methionine loading. | LitMetric

Methionine loading seems to be accompanied by increased oxidative stress and damage. However, it is not known how this oxidative stress is generated. We performed the present crossover study to further elucidate the effects of methionine loading on oxidative stress in the blood of healthy volunteers, and to examine possible preventative effects of N -acetylcysteine (NAC) administration. A total of 18 healthy subjects were given two oral methionine loads of 100 mg/kg body weight, 4 weeks apart, one without NAC (Met group), and one in combination with supplementation with 2x900 mg doses of NAC (Met+NAC group). Blood samples were collected before and 2, 4, 8 and 24 h after methionine loading for measurements of thiol levels, protein carbonyls, lipid peroxidation, cellular fibronectin and ferric reducing ability of plasma (FRAP; i.e. antioxidant capacity). After methionine loading, whole-blood levels of free and oxidized cysteine and homocysteine were increased in both groups. Furthermore, the total plasma levels of homocysteine were higher, whereas those of cysteine were lower, after methionine loading in both groups. Lower levels of oxidized homocysteine and a higher free/oxidized ratio were found in the Met+NAC group compared with the Met group. Although the antioxidant capacity decreased after methionine loading, no major changes over time were found for protein carbonyls or cellular fibronectin in either group. Our results suggest that methionine loading may initiate the generation of reactive oxygen species by the (auto)-oxidation of homocysteine. In addition, supplementation with NAC seems to be able to partially prevent excessive increases in the levels of homocysteine in plasma and of oxidized homocysteine in whole blood, and might thereby contribute to the prevention of oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20030052DOI Listing

Publication Analysis

Top Keywords

methionine loading
32
oxidative stress
16
methionine
9
loading
8
met group
8
met+nac group
8
protein carbonyls
8
cellular fibronectin
8
antioxidant capacity
8
levels homocysteine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!