Risk assessment of pesticide runoff from turf.

J Environ Qual

Biological and Environmental Engineering, Riley-Robb Hall, Cornell Univ., Ithaca, NY 14853, USA.

Published: July 2003

AI Article Synopsis

  • The TurfPQ model simulated pesticide runoff from bentgrass fairways on northeastern US golf courses, generating 100-year daily records for Boston, Philadelphia, and Rochester.
  • Annual pesticide runoff loads were low, generally not exceeding 3% of applications, with most below 1%.
  • However, certain pesticides like chlorothalonil and iprodione often exceeded harmful concentrations for aquatic organisms, while others showed safer levels in runoff.

Article Abstract

The TurfPQ model was used to simulate the runoff of 15 pesticides commonly applied to creeping bentgrass (Agrostis stolonifera L.) fairways and greens on golf courses in the northeastern USA. Simulations produced 100-yr daily records of water runoff, pesticide runoff, and pesticide concentration in runoff for three locations: Boston, MA, Philadelphia, PA, and Rochester, NY. Results were summarized as annual and monthly means and annual maximum daily loads (AMDLs) corresponding to 10- and 20-yr return periods. Mean annual pesticide runoff loads did not exceed 3% of annual applications for any pesticide or site, and most losses were substantially less than 1% of application. However, annual or monthly mean concentrations of chlorothalonil, iprodione, and PCNB in fairway runoff often exceeded concentrations that result in 50% mortality of the affected species (LC50) for aquatic organisms. Concentrations of azoxystrobin, bensulide, cyfluthrin, and trichlorfon in extreme (1 in 10 yr or 1 in 20 yr) events often approached or exceeded LC50 levels. Concentrations of halofenozide, mancozeb, MCPP, oxadiazon, propiconazole, thiophanate-methyl, triadimefon, and trinexapac-ethyl were well below LC50 levels, and turf runoff of these chemicals does not appear to be hazardous to aquatic life in surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2003.4470DOI Listing

Publication Analysis

Top Keywords

pesticide runoff
12
runoff
8
runoff pesticide
8
annual monthly
8
lc50 levels
8
pesticide
5
annual
5
risk assessment
4
assessment pesticide
4
runoff turf
4

Similar Publications

Background: The decline in wheat output in Ethiopia is widely attributed to pests, which has led to a rise in the usage of pesticides to boost productivity. The degree of pesticides sorption and degradation which influence the likelihood of environmental contamination from pesticides seeping into water bodies from soil has not yet been published for Ethiopian soils. The study aimed at to quantify the levels of pesticide residues, assess glyphosate's adsorption capabilities and degradation rate in the soils.

View Article and Find Full Text PDF

Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.

View Article and Find Full Text PDF

Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances.

Environ Sci Pollut Res Int

December 2024

Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.

This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.

View Article and Find Full Text PDF

Esterified Lignin Nanoparticles for Targeted Chemical Delivery in Plant Protection.

ACS Appl Mater Interfaces

January 2025

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.

There is a growing demand for biobased functional materials that can ensure targeted pesticide delivery and minimize active ingredient loss in the agricultural sector. In this work, we demonstrated the use of esterified lignin nanoparticles (ELNPs) as carriers and controlled-release agents of hydrophobic compounds. Curcumin was selected as a hydrophobic model compound and was incorporated during ELNP fabrication with entrapment efficiencies exceeding 95%.

View Article and Find Full Text PDF

Transcriptomics, metabolomics and proteomics analyses reveal glyphosate tolerance mechanism in red swamp crayfish Procambarus clarkii.

Sci Total Environ

January 2025

Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.

Glyphosate (Gly), the world's most widely used herbicide in agriculture, can poison the red swamp crayfish, Procambarus clarkii, via spray drift and surface runoff into surface waters. However, there is a paucity of research on the mechanisms that affect crayfish tolerance to Gly at typical environmental concentrations. To address this research gap, we investigated the effects of Gly stress (0, 6, 12, 24, and 72 h) at different concentrations (0, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!