Natural gas flow computer with open architecture using intelligent instrumentation and field bus.

ISA Trans

Department of Telecommunications and Control Engineering-PTC, Laboratory of Automation and Control-LAC, Escola Politécnica da Universidade de São Paulo, São Paulo, Brasil.

Published: April 2003

A new approach to natural gas flow computer design is presented in this paper. The developed system runs on a personal computer and employs the state-of-the-art mathematical models for corrections of some aspects of fluid flow dynamics, as well as for compressible behavior of gaseous fluid considerations. Orifice plates were used as primary elements. Measurements were performed through intelligent sensors. Results of the system metrological tests are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0019-0578(07)60125-6DOI Listing

Publication Analysis

Top Keywords

natural gas
8
gas flow
8
flow computer
8
computer open
4
open architecture
4
architecture intelligent
4
intelligent instrumentation
4
instrumentation field
4
field bus
4
bus approach
4

Similar Publications

Harmful algal blooms (HABs) formed by toxic microalgae have seriously threatened marine ecosystems and food safety and security in recent years. Among them, has attracted the attention of scientists and society due to its acute and rapid neurotoxicity in mice. Herein, the growth and gymnodimine A (GYM-A) production of were investigated in diverse culture systems with different surface-to-volume (S/V) ratios and nitrogen/phosphorus concentrations.

View Article and Find Full Text PDF

Background/objectives: Catha edulis, commonly known as khat, is used for its psychoactive effects and is considered a natural amphetamine. The current study investigated the metabolomic profile in the cerebellum of mice after repeated exposure to khat and evaluated the effects of clavulanic acid on the metabolomic profile in the cerebellum in khat-treated mice.

Methods: Male C67BL/6 mice that were 6-9 weeks old were recruited and divided into three groups: the control group was treated with 0.

View Article and Find Full Text PDF

Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.

J Funct Biomater

December 2024

CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing.

View Article and Find Full Text PDF

Long-term polymer flooding exacerbates reservoir heterogeneity, intensifying intra- and inter-layer conflicts, which makes it difficult to recover the remaining oil. Therefore, further improvement in oil recovery after polymer flooding is essential. In this study, a weak gel system was successfully synthesized, and possesses a distinct network structure that becomes more compact as the concentration of partially hydrolyzed polyacrylamide increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!