Hindlimb ischemia for 4 h, followed by reperfusion, resulted in necrosis of most soleus muscle in euthyroid rats, whereas only slight damage occurred in hypothyroid rats. Muscle repair after transection of the tibialis anterior muscle of hypothyroid rats showed delayed debris removal, initial retardation of myotube formation, and a higher incidence of aberrant sarcomeres in newly formed muscle fibers by electron microscopy. The protective mechanism against ischemia in hypothyroid muscles can probably be attributed to decreased degradation of high-energy phosphates, reduced formation of substrates for xanthine oxidase during ischemia, and attenuated generation of harmful oxygen free radicals during reperfusion. Initial delay of myotube formation seems to reflect retarded proliferation of muscle precursor cells. Prolonged occurrence of aberrant sarcomeres in hypothyroidism is perhaps due to a delay or imbalance in the synthesis of proteins that assemble sarcomeres. These findings demonstrate the significant roles of thyroid hormones in ischemic injury and muscle repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.10364 | DOI Listing |
J Vis Exp
January 2025
Department of Cardiac Surgery, the First Affiliated Hospital of Xinjiang Medical University;
The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
January 2025
Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.
As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI).
View Article and Find Full Text PDFCureus
December 2024
Orthopaedic Surgery, Ng Teng Fong General Hospital, Singapore, SGP.
This case report describes a 70-year-old male presenting with limb weakness, urinary retention and tandem cervical and lumbar spinal stenosis with complicating white cord syndrome, a rare reperfusion injury post decompression surgery. Initially admitted following an unwitnessed fall, the patient's neurological examination indicated that progressive weakness of the limbs and sensory loss etiology is cervical and lumbar spondylosis with severe spinal canal stenosis, confirmed by imaging. Due to rapid deterioration, he underwent C5 corpectomy, cervical decompression and fusion.
View Article and Find Full Text PDFCureus
December 2024
Department of Colorectal Surgery, Liverpool Hospital, Sydney, AUS.
Blunt abdominal trauma frequently results in visceral injury to either solid or hollow organs; however, injury to the gallbladder is rare. This is most likely due to the anatomical position of the gallbladder, which is well-insulated posterior to the liver and rib cage. Gallbladder injuries can be in the form of avulsion, contusion, or laceration.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Geriatric Rehabilitation, Jiangbin Hospital, Nanning, China.
Background: Programmed cell death plays an important role in neuronal injury and death after ischemic stroke (IS), leading to cellular glucose deficiency. Glucose deficiency can cause abnormal accumulation of cytotoxic disulfides, resulting in disulfidptosis. Ferroptosis, apoptosis, necroptosis, and autophagy inhibitors cannot inhibit this novel programmed cell death mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!