Extracellular nucleotides, cartilage stress, and calcium crystal formation.

Curr Opin Rheumatol

Thurston Arthritis Research Center, University of North Carolina, North Carolina 27599-7280, USA.

Published: May 2003

Nucleotides are released by chondrocytes at rest and in response to mechanical stimulation. Extracellular nucleotides are metabolized by a variety of ectoenzymes, producing free phosphate (Pi) or pyrophosphate (PPi) and promoting matrix mineralization. Ectoenzymes are differentially localized in cartilage and may be co-released with nucleotides during mechanical stimulation. Extracellular nucleotides can also serve as substrates and/or modulators of enzymes such as tissue transglutaminase and ecto-protein kinases that modify matrix proteins and regulate crystal deposition or growth. Understanding the evolution of osteoarthritis and calcium crystal deposition diseases will require clearer knowledge of the functions of nucleotides and ectoenzymes in the cartilage extracellular matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002281-200305000-00021DOI Listing

Publication Analysis

Top Keywords

extracellular nucleotides
12
calcium crystal
8
mechanical stimulation
8
stimulation extracellular
8
crystal deposition
8
nucleotides
5
extracellular
4
nucleotides cartilage
4
cartilage stress
4
stress calcium
4

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Background: A rare reelin gene variant (RELN-COLBOS mutation) delayed dementia onset in almost 30 years in an autosomal dominant Alzheimer's disease (ADAD) carrier. This patient presented with high amyloid-β (Aβ) plaque load, but low tau accumulation, suggesting that this single-nucleotide polymorphism (SNP) in RELN conferred a resilience not only to cognitive decline but also to tauopathy in ADAD. However, whether RELN SNPs are also protective in sporadic Alzheimer's disease (AD) is yet to be determined.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are lipid bilayer nanoparticles (30-10,000 nm) released from all cells that facilitate cell-to-cell communication. Cell type-specific EVs can be enriched using cell-specific surface markers. Neuronal-enriched EVs (NEVs) contain measurable neurotrophins, pro- and mature brain-derived neurotrophic factor (BDNF), that have opposing action in neuronal plasticity.

View Article and Find Full Text PDF

Background: A rare reelin gene variant (RELN-COLBOS mutation) delayed dementia onset in almost 30 years in an autosomal dominant Alzheimer's disease (ADAD) carrier. This patient presented with high amyloid-ß (Aß) plaque load, but low tau accumulation, suggesting that this single-nucleotide polymorphism (SNP) in RELN conferred a resilience not only to cognitive decline but also to tauopathy in ADAD. However, whether RELN SNPs are also protective in sporadic Alzheimer's disease (AD) is yet to be determined.

View Article and Find Full Text PDF

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection of novel signals in available cohorts. We introduce "genome-wide association neural networks (GWANN)" a novel approach that uses neural networks (NNs) to perform a gene-level association study with family history of Alzheimer's disease (AD). In UK Biobank, we defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!