The urokinase cellular receptor (uPAR) recognizes the N-terminal growth factor domain of urokinase-type plasminogen activator (uPA) and is expressed by several cell types. The present study was designed to test the hypothesis that uPAR regulates the renal fibrogenic response to chronic injury. Groups of uPAR wild-type (+/+) and deficient (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery. Not detected in normal kidneys, uPAR mRNA was expressed in response to UUO in the +/+ mice. By in situ hybridization, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed uPAR+/+ kidneys. The severity of renal fibrosis, based on the measurement of total collagen (13.5 +/- 1.5 versus 9.8 +/- 1.0 microg/mg kidney on day 14; -/- versus +/+) and interstitial area stained by Masson trichrome (22 +/- 4% versus 14 +/- 3% on day 14; -/- versus +/+) was significantly greater in the uPAR-/- mice. In the absence of uPAR, renal uPA activity was significantly decreased compared with the wild-type animals after UUO (62 +/- 20 versus 135 +/- 13 units at day 3 UUO; 74 +/- 17 versus 141 +/- 16 at day 7 UUO; 98 +/- 20 versus 165 +/- 10 at day 14 UUO; -/- versus +/+). In contrast, renal expression of several genes that regulate plasmin activity were similar in both genotypes, including uPA, tPA, PAI-1, protease nexin-1, and alpha2-antiplasmin. Worse renal fibrosis in the uPAR-/- mice appears to be TGF-beta-independent, as TGF-beta activity was actually reduced by 65% in the -/- mice despite similar renal TGF-beta1 mRNA levels. Significantly lower levels of the major 2.3-kb transcript and the 69-kd active protein of hepatocyte growth factor (HGF), a known anti-fibrotic growth factor, in the uPAR-/- mice suggests a potential link between HGF and the renoprotective effects of uPAR. These data suggest that renal uPAR attenuates the fibrogenic response to renal injury, an outcome that is mediated in part by urokinase-dependent but plasminogen-independent functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.asn.0000064292.37793.fb | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: In Alzheimer's Disease trials, the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) are commonly utilized as inclusionary criteria at screening. These measures, however, do not always reaffirm inclusionary status at baseline. Score changes between screening and baseline visits may imply potential score inflation at screening leading to inappropriate participant enrollment.
View Article and Find Full Text PDFBackground: CT1812 is an experimental therapeutic sigma-2 receptor modulator in development for Alzheimer's disease (AD) and dementia with Lewy bodies. CT1812 reduces the affinity of Aβ oligomers to bind to neurons and exert synaptotoxic effects. This phase 2, multi-center, international, randomized, double-blind, placebo-controlled trial assessed safety, tolerability and effects of CT1812 on cognitive function in individuals with AD.
View Article and Find Full Text PDFBackground: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.
View Article and Find Full Text PDFBackground: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!