Ischemia-reperfusion injury (I/R injury) is a common cause of acute renal failure. Recovery from I/R injury requires renal tubular regeneration. Hematopoietic stem cells (HSC) have been shown to be capable of differentiating into hepatocytes, cardiac myocytes, gastrointestinal epithelial cells, and vascular endothelial cells during tissue repair. The current study tested the hypothesis that murine HSC can contribute to the regeneration of renal tubular epithelial cells after I/R injury. HSC isolated from male Rosa26 mice that express beta-galactosidase constitutively were transplanted into female nontransgenic mice after unilateral renal I/R injury. Four weeks after HSC transplantation, beta-galactosidase-positive cells were detected in renal tubules of the recipients by X-Gal staining. PCR analysis of the male-specific Sry gene and Y chromosome fluorescence in situ hybridization confirmed the presence of male-derived cells in the kidneys of female recipients. Antibody co-staining showed that beta-galactosidase was primarily expressed in renal proximal tubules. This is the first report to show that HSC can differentiate into renal tubular cells after I/R injury. Because of their availability, HSC may be useful for cell replacement therapy of acute renal failure.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.asn.0000061595.28546.a0DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
renal tubular
12
renal
10
hematopoietic stem
8
cells
8
stem cells
8
contribute regeneration
8
regeneration renal
8
renal tubules
8
ischemia-reperfusion injury
8

Similar Publications

Objectives: We have previously shown that ultrasound-guided repair results in an accurate anchor placement and restores ankle joint stability using cadaveric models. The objective is to assess the safety and clinical outcomes of ultrasound-guided ATFL repair with or without augmentation.

Methods: Forty-nine patients with chronic lateral ankle instability underwent ultrasound-guided ATFL repair with or without augmentation.

View Article and Find Full Text PDF

Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway.

Int Immunopharmacol

January 2025

Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236000, China. Electronic address:

Background: Hydroxysafflor yellow A (HSYA), an active component isolated from Carthamus tinctorius L., has demonstrated potent protective effects against cerebral ischaemia/reperfusion (I/R) injury. Microglial polarisation plays a crucial role in I/R.

View Article and Find Full Text PDF

Starting from the metabolic profile of type 2 diabetes mellitus (T2DM), we hypothesized that the mechanisms of ¹³¹I-induced cardiotoxicity differ between patients diagnosed with differentiated thyroid cancer (DTC) with/without T2DM, with metformin potentially acting as a cardioprotective agent by mitigating inflammation in patients with T2DM. To address this hypothesis, we quantified, using ELISA, the serum concentration of several key biomarkers that reflect cardiac injury (NT-proBNP, NT-proANP, ST2/IL-33R, and cTn I) in 74 female patients with DTC/-T2DM and 25 with DTC/+T2DM treated with metformin. All patients received a cumulative oral dose of I exceeding 150 mCi (5.

View Article and Find Full Text PDF

Co-targeting of glial activation and inflammation by tsRNA-Gln-i-0095 for treating retinal ischemic pathologies.

Cell Commun Signal

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Ischemic retinopathies are the major causes of blindness, yet effective early-stage treatments remain limited due to an incomplete understanding of the underlying molecular mechanisms. Significant changes in gene expression often precede structural and functional alterations. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are emerging as novel gene regulators, involved in various biological processes and human diseases.

View Article and Find Full Text PDF

Background: Ischemia/reperfusion (I/R) is an inevitable pathophysiological process during heart transplantation, and ferroptosis is an important pathogenic mechanism. Unlike other modes of cell death, ferroptosis depends on the accumulation of iron within the cell and the oxidative degradation of polyunsaturated fatty acids. Dysregulation of this pathway has been linked to the progression of multiple pathological conditions, making it an attractive target for therapeutic intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!