A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel fluorescent ligase detection reaction and flow cytometric analysis of SYT-SSX fusions in synovial sarcoma. | LitMetric

Synovial sarcomas (SS) are characterized by the t(X;18)(p11;q11) translocation and its resultant fusion gene, SYT-SSX. Two homologues of the SSX gene (ie, SSX1 and SSX2) are involved in the vast majority of SS and the SYT-SSX1 type of fusion has been associated with inferior clinical outcome. Thus, detection of the presence and type of SYT-SSX fusion is critical for diagnosis and prognosis in SS. Identification of SYT-SSX fusion type is typically accomplished by reverse-transcription polymerase chain reaction (RT-PCR) followed by a post-PCR analytic method. As mRNA nucleotide sequences of the SSX1 and SSX2 segments involved in the SYT-SSX fusion are nearly identical, post-PCR methods must be highly discriminatory. We describe a novel method to identify and differentiate these two chimeric transcripts using RT-PCR followed by fluorescent thermostable ligase detection reaction (f-LDR), microparticle bead capture and flow cytometric detection. Evaluation of this unique approach in 11 cases of SS without prior knowledge of SYT-SSX status, six cases of control sarcomas (CS) and three hematopoietic cell lines, revealed that the f-LDR technique was rapid, unambiguous, and highly specific. The f-LDR results were compared to XmnI enzyme digestion patterns and sequencing of PCR products, revealing a 100% concordance for all cases of SS with regards to SYT-SSX transcript type. In addition, there was a strong association of transcript type detected by f-LDR and morphological subclassification of SS, as previously reported. We conclude that this f-LDR method with flow-based detection is a robust approach to post-PCR detection of specific nucleotide sequences in SS and may be more broadly applicable in molecular oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1907321PMC
http://dx.doi.org/10.1016/S1525-1578(10)60462-XDOI Listing

Publication Analysis

Top Keywords

syt-ssx fusion
12
ligase detection
8
detection reaction
8
flow cytometric
8
ssx1 ssx2
8
nucleotide sequences
8
transcript type
8
syt-ssx
7
detection
6
fusion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!