The structure of mitochondria is highly dynamic and depends on the balance of fusion and fission processes. Deletion of the mitochondrial dynamin-like protein Mgm1 in yeast leads to extensive fragmentation of mitochondria and loss of mitochondrial DNA. Mgm1 and its human ortholog OPA1, associated with optic atrophy type I in humans, were proposed to be involved in fission or fusion of mitochondria or, alternatively, in remodeling of the mitochondrial inner membrane and cristae formation (Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) J. Cell Biol. 151, 341-352; Wong, E. D., Wagner, J. A., Scott, S. V., Okreglak, V., Holewinske, T. J., Cassidy-Stone, A., and Nunnari, J. (2003) J. Cell Biol. 160, 303-311; Sesaki, H., Southard, S. M., Yaffe, M. P., and Jensen, R. E. (2003) Mol. Biol. Cell, in press). Mgm1 and its orthologs exist in two forms of different lengths. To obtain new insights into their biogenesis and function, we have characterized these isoforms. The large isoform (l-Mgm1) contains an N-terminal putative transmembrane segment that is absent in the short isoform (s-Mgm1). The large isoform is an integral inner membrane protein facing the intermembrane space. Furthermore, the conversion of l-Mgm1 into s-Mgm1 was found to be dependent on Pcp1 (Mdm37/YGR101w) a recently identified component essential for wild type mitochondrial morphology. Pcp1 is a homolog of Rhomboid, a serine protease known to be involved in intercellular signaling in Drosophila melanogaster, suggesting a function of Pcp1 in the proteolytic maturation process of Mgm1. Expression of s-Mgm1 can partially complement the Deltapcp1 phenotype. Expression of both isoforms but not of either isoform alone was able to partially complement the Deltamgm1 phenotype. Therefore, processing of l-Mgm1 by Pcp1 and the presence of both isoforms of Mgm1 appear crucial for wild type mitochondrial morphology and maintenance of mitochondrial DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M211311200 | DOI Listing |
The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.
View Article and Find Full Text PDFMicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Oncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.
Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!