Structure-specific 5' nucleases play an important role in DNA replication and repair uniquely recognizing an overlap flap DNA substrate and processing it into a DNA nick. However, in the absence of a high-resolution structure of the enzyme/DNA complex, the mechanism underlying this recognition and substrate specificity, which is key to the enzyme's function, remains unclear. Here, we propose a three-dimensional model of the structure-specific 5' flap endonuclease from Pyrococcus furiosus in its complex with DNA. The model is based on the known X-ray structure of the enzyme and a variety of biochemical and molecular dynamics (MD) data utilized in the form of distance restraints between the enzyme and the DNA. Contacts between the 5' flap endonuclease and the sugar-phosphate backbone of the overlap flap substrate were identified using enzyme activity assays on substrates with methylphosphonate or 2'-O-methyl substitutions. The enzyme footprint extends two to four base-pairs upstream and eight to nine base-pairs downstream of the cleavage site, thus covering 10-13 base-pairs of duplex DNA. The footprint data are consistent with a model in which the substrate is bound in the DNA-binding groove such that the downstream duplex interacts with the helix-hairpin-helix motif of the enzyme. MD simulations to identify the substrate orientation in this model are consistent with the results of the enzyme activity assays on the methylphosphonate and 2'-O-methyl-modified substrates. To further refine the model, 5' flap endonuclease variants with alanine point substitutions at amino acid residues expected to contact phosphates in the substrate and one deletion mutant were tested in enzyme activity assays on the methylphosphonate-modified substrates. Changes in the enzyme footprint observed for two point mutants, R64A and R94A, and for the deletion mutant in the enzyme's beta(A)/beta(B) region, were interpreted as being the result of specific interactions in the enzyme/DNA complex and were used as distance restraints in MD simulations. The final structure suggests that the substrate's 5' flap interacts with the enzyme's helical arch and that the helix-hairpin-helix motif interacts with the template strand in the downstream duplex eight base-pairs from the cleavage site. This model suggests specific interactions between the 3' end of the upstream oligonucleotide and the enzyme. The proposed structure presents the first detailed description of substrate recognition by structure-specific 5' nucleases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-2836(03)00351-6 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFSci Adv
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:
Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.
View Article and Find Full Text PDFTalanta
January 2025
Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China. Electronic address:
As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.
View Article and Find Full Text PDFTalanta
December 2024
Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:
The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!