The relationship between opioid actions and L-type Ca(2+) channel blockers has been well documented. However, there is no report relevant to L-type Ca(2+) channel blockers and morphine sensitization, which is suggested to be an analog of behaviors that are characteristic of drug addiction. We now studied systematically the effects of three L-type Ca(2+) channel blockers, nimodipine, nifedipine and verapamil, on morphine-induced locomotor activity, the development and the expression of sensitization to morphine. The results showed that both nimodipine and verapamil attenuated, while nifedipine had only a tendency to decrease morphine-induced locomotor activity. All three drugs inhibited the development of sensitization to morphine. However, none of them showed any effects on the expression of morphine sensitization. These results indicate that blocking L-type Ca(2+) channel attenuates the locomotor-stimulating effects of morphine and inhibits the development but not the expression of morphine sensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-2999(03)01567-x | DOI Listing |
J Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland.
Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany.
encodes the α1c subunit of the L-type Ca channel, Cav1.2. Ventricular myocytes from haploinsufficient () rats exhibited reduced expression of Cav1.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!