In freehand 3-D ultrasound (US), a position sensor is attached to the probe of a 2-D US machine. The resulting 3-D data permit flexible visualisation and more accurate volume measurement than can be achieved using 2-D B-scans alone; however, the use of the position sensor can be inconvenient for the clinician. The objective is, thus, to replace the sensor with a technique for estimating the probe trajectory based on the B-scan images, themselves. One such technique exists, based on decorrelation algorithms. This paper presents an alternative approach based on linear regression of the echo-envelope intensity signal. A probabilistic analysis of the speckle characteristics of the US signal leads to a linear model, on which the regression algorithm is based. The gradient parameter of this model is shown to be directly related to probe motion. The viability of the new approach is demonstrated through simulations and in vitro and in vivo experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-5629(02)00703-2DOI Listing

Publication Analysis

Top Keywords

freehand 3-d
8
3-d ultrasound
8
position sensor
8
sensorless freehand
4
ultrasound regression
4
regression echo
4
echo intensity
4
intensity freehand
4
ultrasound position
4
sensor attached
4

Similar Publications

Distal hamstrings tendons mechanical properties at rest and contraction using free-hand 3-D ultrasonography.

Scand J Med Sci Sports

April 2024

Department of Physical Education and Sport Sciences at Serres, Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece.

Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles.

View Article and Find Full Text PDF

A 3-D ultrasound (US) imaging technique has been studied to facilitate the diagnosis of spinal deformity without radiation. The objective of this article is to propose an assessment framework to automatically estimate spinal deformity in US spine images. The proposed framework comprises four major components, a US spine image generator, a novel transformer-based lightweight spine detector network, an angle evaluator, and a 3-D modeler.

View Article and Find Full Text PDF

Background And Objective: The impact of the experience of the clinician on learning a new skill or equipment was still an intriguing subject. The goal of this research is to determine the accuracy level of a dynamic navigation system to that of freehand drilling by expert and novice practitioners with varied levels of experience. Additionally, the duration of the surgical procedure and the self-confidence level of the surgeons were also evaluated.

View Article and Find Full Text PDF

The objective of this study is to develop a deep-learning-based detection and diagnosis technique for carotid atherosclerosis (CA) using a portable freehand 3-D ultrasound (US) imaging system. A total of 127 3-D carotid artery scans were acquired using a portable 3-D US system, which consisted of a handheld US scanner and an electromagnetic (EM) tracking system. A U-Net segmentation network was first applied to extract the carotid artery on 2-D transverse frame, and then, a novel 3-D reconstruction algorithm using fast dot projection (FDP) method with position regularization was proposed to reconstruct the carotid artery volume.

View Article and Find Full Text PDF

Ultrasound image simulation is a well-explored field with the main objective of generating realistic synthetic images, further used as ground truth for computational imaging algorithms or for radiologists' training. Several ultrasound simulators are already available, most of them consisting in similar steps: 1) generate a collection of tissue mimicking individual scatterers with random spatial positions and random amplitudes; 2) model the ultrasound probe and the emission and reception schemes; and 3) generate the radio frequency (RF) signals resulting from the interaction between the scatterers and the propagating ultrasound waves. This article is focused on the first step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!