On the basis of previous observations in chromosomes 21 and 22, we hypothesize that there is a tissue-specific organization of cardiovascular gene transcripts in the human genome. To examine the distribution of heart-derived transcripts, we assigned a nonredundant set of 4628 fetal and 3574 adult known and uncharacterized cardiovascular expressed-sequence tags (cvESTs) to 5-Mb chromosomal 'windows' on the basis of publicly available sequence mapping data. On a whole-genome level (36,617 genes), chromosome 17 (19.2% in fetal, 16.5% in adult) contained the highest proportion of cvESTs, whereas chromosome Y (2.0% in fetal and adult) contained the lowest. In total, 50 of the 639 windows contained a significantly higher proportion of cvESTs (P < 0.003) compared with the genome-wide cvEST gene density, particularly on gene-dense chromosomes (that is, 17, 19, 22) as opposed to gene-rich chromosomes (for example, 1, 2, 11). This report provides insight into a possible role for complex tissue-specific gene regulation in the human genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0888-7543(03)00008-9 | DOI Listing |
Genes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.
Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.
View Article and Find Full Text PDFNutrients
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia.
A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!