The gene for Agrobacterium tumefaciens OxyR, a peroxide sensor and transcriptional regulator, was characterized. Phylogenetic analysis of bacterial OxyR showed that the protein could be divided into four clades. The A. tumefaciens OxyR grouped in clade III that consists primarily of OxyRs of Alphaproteobacteria displayed the highest homology to OxyR from Rhizobium leguminosarum. oxyR is located next to, and is divergently transcribed from, a bifunctional catalase-peroxidase gene (katA). An A. tumefaciens oxyR mutant was constructed and shown to be hyper-sensitive to H2O2, but not to the superoxide generator, menadione, or an organic hydroperoxide. Exposure of A. tumefaciens to H2O2 resulted in induction of the catalase-peroxidase enzyme. This induction was abolished in the oxyR mutant. In vivo analysis of a katA::lacZ promoter fusion confirmed the results of enzyme assays and indicated that induction of the katA promoter by H2O2 was dependent on functional OxyR. We also examined the regulation of oxyR in A. tumefaciens. Exposure to H2O2 did not induce expression of the gene but simply changed OxyR from a reduced to an oxidized form. The in vivo oxyR promoter analysis showed that the promoter was auto-regulated and that transcription was not induced by H2O2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(03)00535-7 | DOI Listing |
BMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan. Electronic address:
Objective: Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms.
Methods: Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model.
Cell Syst
November 2024
Biomedical Engineering, Boston University, Boston, MA, USA. Electronic address:
One snapshot of the peer review process for "The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time" (Choudhary et al., 2024)..
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
Cell Syst
November 2024
Department of Biochemistry, University of Oxford, Oxford, UK. Electronic address:
Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!