The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses.

Biochem Biophys Res Commun

Department of Biotechnology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.

Published: April 2003

The gene for Agrobacterium tumefaciens OxyR, a peroxide sensor and transcriptional regulator, was characterized. Phylogenetic analysis of bacterial OxyR showed that the protein could be divided into four clades. The A. tumefaciens OxyR grouped in clade III that consists primarily of OxyRs of Alphaproteobacteria displayed the highest homology to OxyR from Rhizobium leguminosarum. oxyR is located next to, and is divergently transcribed from, a bifunctional catalase-peroxidase gene (katA). An A. tumefaciens oxyR mutant was constructed and shown to be hyper-sensitive to H2O2, but not to the superoxide generator, menadione, or an organic hydroperoxide. Exposure of A. tumefaciens to H2O2 resulted in induction of the catalase-peroxidase enzyme. This induction was abolished in the oxyR mutant. In vivo analysis of a katA::lacZ promoter fusion confirmed the results of enzyme assays and indicated that induction of the katA promoter by H2O2 was dependent on functional OxyR. We also examined the regulation of oxyR in A. tumefaciens. Exposure to H2O2 did not induce expression of the gene but simply changed OxyR from a reduced to an oxidized form. The in vivo oxyR promoter analysis showed that the promoter was auto-regulated and that transcription was not induced by H2O2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00535-7DOI Listing

Publication Analysis

Top Keywords

oxyr
12
tumefaciens oxyr
12
agrobacterium tumefaciens
8
oxyr mutant
8
tumefaciens
6
h2o2
5
oxyr agrobacterium
4
tumefaciens evaluation
4
evaluation role
4
role regulation
4

Similar Publications

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Photodynamic disruption of a polymicrobial biofilm of two periodontal species using indocyanine green-loaded nanospheres.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan. Electronic address:

Objective: Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms.

Methods: Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model.

View Article and Find Full Text PDF

One snapshot of the peer review process for "The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time" (Choudhary et al., 2024)..

View Article and Find Full Text PDF
Article Synopsis
  • Real-world organisms face multiple stressors simultaneously, but lab studies usually focus on single stressors in simplified conditions.
  • This study uses microfluidics to apply both physical (shear flow) and chemical (hydrogen peroxide) stressors to the bacteria Pseudomonas aeruginosa, revealing that flow significantly enhances the effectiveness of HO on bacterial growth.
  • The findings show that natural levels of these stressors interact in ways that limit bacterial movement and survival, emphasizing the importance of studying multiple stressors to better understand their true effects.
View Article and Find Full Text PDF

Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!