A 5-inch-diameter Frisch Grid gas-proportional ionization chamber was utilized at Brookhaven National Laboratory (BNL) to rapidly characterize and quantify alpha-emitting actinides in unprocessed water, soil, air-filter, urine, and solid matrices. Instrument calibrations for the various matrices were performed by spiking representative samples with National Institute of Standards and Technology traceable isotopes of 230Th, 232U, 236Pu, and 243Am. Detection efficiencies were typically 15-20% for solid matrices (soil, concrete, filters, dry urine) and 45% for mass-less water samples. Instrument background over a 512-channel alpha-energy range of 3-8 MeV is very low at 0.01 cps. At optimum efficiency, minimum detectable levels of 0.56 mBq Kg(-1), 74 mBq L(-1) and 14.8 mBq filter(-1) were achievable for 40 x 10(-6) Kg soil, 1 x 10(-3) L tap water (or urine), and 4.5 cm diameter air-filter samples, respectively, each counted for 60 min. Data and spectra are presented showing the quality of results obtained using untreated samples obtained from the BNL Graphite Research Reactor Decommissioning Project. These samples contained Bq to MBq per gram amounts of (239,240)Pu, 241Am, and/or (234,235/238)U (as well as other beta/gamma emitters). Data and spectra are also presented for a very finely pulverized and homogeneous U.S. DOE/RESL soil reference standard (spiked with 239Pu, 241Am, and 233U) that was used to assess precision, accuracy, and reproducibility. Although this technique has its limitations, the advantages are (1) minimal sample preparation, (2) no separation chemistry required, (3) no chemical or hazardous waste generated, and (4) ability to immediately characterize and quantify alpha-emitting nuclides in most matrices. The benefits of this technique to the BNL/DOE Project Managers were rapid (1-2 d) turn-around times coupled with significant cost savings, as compared to commercial off-site analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004032-200304000-00009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!