Transforming growth factor-beta1 (TGFbeta1) is a multifunctional cytokine that is over expressed during liver hepatocytes injury and regeneration. SV40-transformed CWSV-1 rat hepatocytes that are p53-defective undergo apoptosis in response to choline deficiency (CD) or TGFbeta1, which mediates CD-apoptosis. Reactive oxygen species (ROS) are essential mediators of apoptosis. We have shown that apoptosis induced by TGFbeta1 is accompanied by ROS generation and the ROS-trapping agent N-acetylcysteine (NAC) inhibits TGFbeta1-induced apoptosis. While persistent induction of ROS contributes to this form of apoptosis, the source of ROS generated downstream of TGFbeta1 is not clear. The mitochondria and the endoplasmic reticulum both harbor potent electron transfer chains that might be the source of ROS essential for completion of TGFbeta1-apoptosis. Here we show that CWSV-1 cells treated with cyclosporine A, which prevents opening of mitochondrial membrane pores required for ROS generation, inhibits TGFbeta1-induced apoptosis. A similar effect was obtained by treating these cells with rotenone, an inhibitor of complex 1 of the mitochondrial electron transfer chain. However, we demonstrate that TGFbeta1 induces cytochrome P450 1A1 and that metyrapone, a potent inhibitor of cytochrome P450 1A1, inhibits TGFbeta1-induced apoptosis. Therefore, our studies indicate that concurrent with promoting generation of ROS from mitochondria, TGFbeta1 also promotes generation of ROS from the cytochrome P450 electron transfer chain. Since inhibition of either of these two sources of ROS interferes with apoptosis, it is reasonable to conclude that the combined involvement of both pathways is essential for completion of TGFbeta1-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.10498 | DOI Listing |
Mol Cell Endocrinol
January 2025
The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:
Research Question: To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells.
Design: Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling.
Stem Cell Res Ther
January 2025
Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
Background: Pulmonary fibrosis (PF) is a common and multidimensional devastating interstitial lung disease. The development of novel and more effective interventions for PF is an urgent clinical need. A previous study has found that miR-181a-5p plays an important role in the development of PF, and human amniotic mesenchymal stem cells (hAMSCs) exert potent therapeutic potential on PF.
View Article and Find Full Text PDFFitoterapia
January 2025
Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Respir Res
July 2024
Lung Biology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic bronchitis, emphysema and vascular remodelling. The disease is associated with hypoxia, inflammation and oxidative stress. Lung fibroblasts are important cells in remodelling processes in COPD, as main producers of extracellular matrix proteins but also in synthesis of growth factors and inflammatory mediators.
View Article and Find Full Text PDFJ Cardiothorac Surg
April 2024
Department of Intensive care unit, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, No. 9 Liuhongqiao Jiaowei Road, Wenzhou City, 325000, Zhejiang Province, China.
Background: Cardiac fibroblasts (CFs) are activated after initial injury, and then differentiate into myofibroblasts (MFs), which play a pivotal role as the primary mediator cells in pathological remodeling. Sodium butyrate (NaB), being a metabolite of gut microbiota, exhibits anti-inflammatory property in local therapies on sites other than the intestine. Thus, this study aimed to probe the mechanism by which NaB regulates CFs transdifferentiation through the NLRP3/Caspase-1 pyroptosis pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!