AI Article Synopsis

  • Recent findings indicate that gene expression can be regulated post-transcriptionally through the rapid degradation of messenger RNAs (mRNAs) affected by adenyl-uridyl-rich elements (AREs) and their interactions with specific proteins or exosomes.
  • This review highlights the role of AU-rich binding proteins (AUBPs) and exosomes in mRNA degradation, while also discussing factors that help stabilize mRNAs carrying ARE motifs.
  • The insights from these mechanisms may lead to potential pharmacological treatments for disorders linked to gene expression suppression, particularly in developmental disorders, through targeted molecular interventions in protein degradation.

Article Abstract

Recent evidence suggests that gene expression may be regulated, at least in part, at post-transcriptional level by factors inducing the extremely rapid degradation of messenger RNAs. These factors include reactions between adenyl-uridyl-rich elements (AREs) of the relevant mRNA and either specific proteins that bind to these elements or exosomes. This review deals with examples of the proteins (AU-rich binding proteins, AUBPs) and exosomes, which have been shown to form complexes with AREs and bring about rapid degradation of the relevant mRNA, and with certain other factors, which protect the RNA from such degradation. The biochemical and physiological factors underlying the stability of messenger RNAs carrying the ARE motifs will be reviewed in the light of their emerging significance for cell physiology, human pathology, and molecular medicine. We also consider the possible application of the results of recent insights into the mechanisms to pharmacological interventions to prevent or cure disorders, especially developmental disorders, which the suppression of gene expression may bring about. Molecular targeting of specific steps in protein degradation by synthetic compounds has already been utilized for the development of pharmacological therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.10272DOI Listing

Publication Analysis

Top Keywords

gene expression
12
messenger rnas
12
degradation messenger
8
rapid degradation
8
relevant mrna
8
degradation
5
post-transcriptional regulation
4
regulation gene
4
expression degradation
4
rnas evidence
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!