The rough draft of the human genome map has been used to identify most of the functional genes in the human genome, as well as to identify nucleotide variations, known as "single-nucleotide polymorphisms" (SNPs), in these genes. By use of advanced biotechnologies, researchers are beginning to genotype thousands of SNPs from biological samples. Among the many possible applications, one of them is the study of SNP associations with complex human diseases, such as cancers or coronary heart diseases, by using a case-control study design. Through the gathering of environmental risk factors and other lifestyle factors, such a study can be effectively used to investigate interactions between genes and environmental factors in their associations with disease phenotype. Earlier, we developed a method to statistically construct individuals' haplotypes and to estimate the distribution of haplotypes of multiple SNPs in a defined population, by use of estimating-equation techniques. Extending this idea, we describe here an analytic method for assessing the association between the constructed haplotypes along with environmental factors and the disease phenotype. This method is also robust to the model assumptions and is scalable to a large number of SNPs. Asymptotic properties of estimations in the method are proved theoretically and are tested for finite sample sizes by use of simulations. To demonstrate the use of the method, we applied it to assess the possible association between apolipoprotein CIII (six coding SNPs) and restenosis by using a case-control data set. Our analysis revealed two haplotypes that may reduce the risk of restenosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180275PMC
http://dx.doi.org/10.1086/375140DOI Listing

Publication Analysis

Top Keywords

haplotypes environmental
8
human genome
8
environmental factors
8
disease phenotype
8
method
6
haplotypes
5
snps
5
method assessment
4
assessment disease
4
disease associations
4

Similar Publications

Morphology, phylogeography, phylogeny, and taxonomy of (Apiaceae).

Front Plant Sci

January 2025

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.

View Article and Find Full Text PDF

Comprehensive genomic analysis and selection signature detection in endangered Beigang pigs using whole-genome sequencing data.

Anim Genet

February 2025

Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China.

The Beigang pig was recently identified as one of the endangered breeds during a Chinese indigenous pig genetic resource survey. The Beigang breed is notable for its remarkable roughage tolerance and high reproductive capacity according to historical records. Morphologically, the Beigang pig resembles many indigenous pigs in eastern China, especially in its large ears.

View Article and Find Full Text PDF

Linkage Mapping and Identification of Candidate Genes for Cold Tolerance in Rice (Oryza Sativa L.) at the Bud Bursting Stage.

Rice (N Y)

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.

View Article and Find Full Text PDF

Pleistocene Refugia Inferred from Molecular Evidence in a Forest-Dwelling Harvestman (Arachnida, Opiliones, Gonyleptidae) Support a Biogeographic Split in Subtropical Argentina.

Integr Zool

January 2025

Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina.

This paper addresses the population genetic structure of the forest-dwelling gonyleptid Geraeocormobius sylvarum (Arachnida, Opiliones). Phylogeographic analyses using cytochrome oxidase subunit I (COI) were conducted on 186 individuals from 43 localities in Argentina and Paraguay, arranged into nine operational sectors and defined upon geographic and vegetation features. Given the current environmental uniformity, it was aimed to assess whether molecular fingerprints of G.

View Article and Find Full Text PDF

Introduction: The decline of the European/western honeybee () population is on account of a plethora of microorganisms, such as and , two microsporidian fungi responsible of nosemosis that affects welfare and production of the bee industry. Accordingly, this study aimed to investigate the presence of both pathogens in bees, pollen and honey from apiaries in Southwestern Italy.

Methods: From March to July 2022 and 2023, apiaries ( = 10) were selected and classified as High Impact Areas (HIAs,  = 5) and Low Impact Areas (LIAs,  = 5) according to a 5-point environmental risk index based on factors affecting bee health sand related productions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!