A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of rapid hydraulic shock loads on the performance of granular bed baffled reactor. | LitMetric

Effect of rapid hydraulic shock loads on the performance of granular bed baffled reactor.

Environ Technol

Urban Water Technology Centre, School of Science and Engineering, University of Abertay Dundee, Bell Street, Dundee, DD1 1HG, Scotland, UK.

Published: March 2003

This paper describes the performance of a granular bed baffled reactor when receiving unpredictable hydraulic shock loads, which is a frequent occurrence in industrial wastewater treatment plants. Shock loads were created by rapidly increasing volumetric organic loading rates from 2.5 to 20 kg COD m(-3) d(-1), by decreasing (in a stepwise fashion) hydraulic retention time from 48 hrs to 6 hrs. Synthetic wastewater containing glucose as the main organic compound was used in this study. High effluent quality was observed, with soluble COD removal efficiencies of 94% to 97%, during all shock loading conditions at steady state. The reactor appeared to possess high tolerance to rapid hydraulic changes with fast recovery time. Marked phase separation between different microorganisms occurred at high organic loading rate, with acidogenesis and methanogenesis being the respective dominant activities in the upstream and downstream compartments of the reactor. The compartmentalised nature of the reactor and the granular bed structure were believed to be responsible for high reactor stability during overloading conditions. Microbial ecology in the system appeared to favour acetate and butyrate production at high organic loading rate. Granular biomass possessed good settling characteristics, hence encouraging high biomass retention within the system. The dense granular bed in the methanogenic zone acted as a filtration bed for lighter floating non-granular biomass, thus further reducing overall effluent solids concentration. This study demonstrated that the granular bed baffled reactor is a suitable system for treating industrial wastewaters with highly varying rates.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330309385568DOI Listing

Publication Analysis

Top Keywords

granular bed
20
shock loads
12
bed baffled
12
baffled reactor
12
organic loading
12
rapid hydraulic
8
hydraulic shock
8
performance granular
8
high organic
8
loading rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!