Identification of catalytic residues of Ca2+-independent 1,2-alpha-D-mannosidase from Aspergillus saitoi by site-directed mutagenesis.

J Biol Chem

Laboratory of Molecular Enzymology, Graduate School of Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan.

Published: July 2003

The roles of six conserved active carboxylic acids in the catalytic mechanism of Aspergillus saitoi 1,2-alpha-d-mannosidase were studied by site-directed mutagenesis and kinetic analyses. We estimate that Glu-124 is a catalytic residue based on the drastic decrease of kcat values of the E124Q and E124D mutant enzyme. Glu-124 may work as an acid catalyst, since the pH dependence of its mutants affected the basic limb. D269N and E411Q were catalytically inactive, while D269E and E411D showed considerable activity. This indicated that the negative charges at these points are essential for the enzymatic activity and that none of these residues can be a base catalyst in the normal sense. Km values of E273D, E414D, and E474D mutants were greatly increased to 17-31-fold wild type enzyme, and the kcat values were decreased, suggesting that each of them is a binding site of the substrate. Ca2+, essential for the mammalian and yeast enzymes, is not required for the enzymatic activity of A. saitoi 1,2-alpha-d-mannosidase. EDTA inhibits the Ca2+-free 1,2-alpha-d-mannosidase as a competitive inhibitor, not as a chelator. We deduce that the Glu-124 residue of A. saitoi 1,2-alpha-d-mannosidase is directly involved in the catalytic mechanism as an acid catalyst, whereas no usual catalytic base is directly involved. Ca2+ is not essential for the activity. The catalytic mechanism of 1,2-alpha-d-mannosidase may deviate from that typical glycosyl hydrolase.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M302621200DOI Listing

Publication Analysis

Top Keywords

catalytic mechanism
12
saitoi 12-alpha-d-mannosidase
12
aspergillus saitoi
8
site-directed mutagenesis
8
kcat values
8
acid catalyst
8
enzymatic activity
8
ca2+ essential
8
directly involved
8
12-alpha-d-mannosidase
6

Similar Publications

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.

View Article and Find Full Text PDF

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Enantioselective Borylcupration/Cyclization of Alkene-Tethered Oxime Esters.

Angew Chem Int Ed Engl

January 2025

University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA.

A copper-catalyzed enantioselective synthesis of borylated 1-pyrrolines from γ,δ-unsaturated oxime esters is reported. Twenty-four novel 1-pyrroline derivatives are reported in yields ranging from 26% to 96% and enantioselectivities from 74.5:25.

View Article and Find Full Text PDF

Lignocellulose nanofiber-enhanced hydrogel electrolytes with lignin-Al in metal-based neutral deep eutectic solvent for flexible supercapacitors.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

The mechanical flexibility and high conductivity of hydrogel electrolytes are crucial for their application in supercapacitors. In this study, we developed hydrogel electrolyte based on lignocellulose nanofibers (LCNFs) through nanofibrillation and self-catalytic gelation in a glycerinum/choline chloride/aluminum chloride hexahydrate (Gly/ChCl/AlCl·6HO) metal-based neutral deep eutectic solvent (DES) system. The lignin-Al self-catalytic mechanism offered an eco-friendly and sustainable method for synthesizing hydrogel electrolytes, while enhancing their ionic conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!