The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.

FEMS Yeast Res

Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Published: April 2001

The role of the proteins encoded by the GAL80 gene, the MIG1 gene and the GAL6 gene in glucose control of galactose consumption by Saccharomyces cerevisiae was studied by physiological characterisation of various GAL mutant strains. Dynamic experiments with the CEN.PK 113-7D wild-type strain and a deltagal80deltamig1 double-mutant strain in aerobic nitrogen-limited continuous cultivations at a dilution rate of 0.1 h(-1), showed simultaneous glucose and galactose consumption by the deltagal80deltamig1 strain. The wild-type strain did not consume galactose in the presence of glucose. Aerobic batch cultivations on glucose-galactose mixtures with the wild-type strain and with recombinant strains with a de-regulated GAL system (the deltagal80deltamig1 strain, a deltagal6 deleted strain, a deltagal6deltagal80deltamig1 triple mutant, and a deltagal6deltagal80deltamig1 triple mutant harbouring a GAL4 high-copy vector) were carried out. Generally, a reduction of glucose control lowered the maximum specific growth rate on glucose and increased the ethanol yield obtained on galactose with more than 100%. In contrast to the wild-type strain, the deltagal6deltagal80deltamig1 triple mutant strain consumed glucose and galactose simultaneously, and this strain also showed the highest ethanol production with an overall ethanol yield of 0.35 g g-1 sugar, which is 17% higher than the yield on glucose obtained with the wild-type strain. GAL80 and MIG1 were demonstrated to be responsible for the majority of the glucose control on the GAL system, whereas GAL6 has a minor role in glucose control. Deletion of GAL6 was shown to have a major impact on biomass and ethanol formation when cells were grown on galactose, and from the data obtained we speculate that Gal6 may be involved in mRNA degradation of the GAL gene transcripts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1567-1364.2001.tb00012.xDOI Listing

Publication Analysis

Top Keywords

glucose control
20
wild-type strain
20
gal system
12
deltagal6deltagal80deltamig1 triple
12
triple mutant
12
strain
11
glucose
10
gal80 mig1
8
control gal
8
saccharomyces cerevisiae
8

Similar Publications

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of osilodrostat and hypercortisolism control on blood pressure (BP) and glycemic control in patients with Cushing's disease.

Methods: Pooled analysis of two Phase III osilodrostat studies (LINC 3 and LINC 4), both comprising a 48-week core phase and an optional open-label extension. Changes from baseline in systolic and diastolic BP (SBP and DBP), fasting plasma glucose (FPG), and glycated hemoglobin (HbA) were evaluated during osilodrostat treatment in patients with/without hypertension or diabetes at baseline.

View Article and Find Full Text PDF

Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!