Synergism in mixtures of cymoxanil and mancozeb on Phytophthora infestans in vivo.

Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet

Plant Protection Institute, Hebei Academy of Agricultural & Forestry Sciences, Baoding 071000, Hebei, China.

Published: July 2003

The preventive activity of 1:8 mixture of cymoxanil and mancozeb against Phytophthora infestans was higher than that of either the two single ingredients or the other nine mixtures. The synergistic interaction existed (synergy ratio 2.01) between the two at the mixing ratio of 1:8, whereas additive interaction (synergy ratios ranged from 0.73 to 1.34) existed at the mixing ratios ranging from 1:1 to 1:7, from 1:9 to 1:10, 1:8 was the optimal ratio. The preventive activity of 1:8 mixture was higher than the curative and the eradicative. In addition, the eradicative synergism of inhibiting sporangia production on lesions was stronger than the eradicative synergism of inhibiting lesion extension and suppressing infection of sporangia, and than the curative synergism of inhibiting lesion sporulation on detached potato leaflets.

Download full-text PDF

Source

Publication Analysis

Top Keywords

synergism inhibiting
12
cymoxanil mancozeb
8
mancozeb phytophthora
8
phytophthora infestans
8
preventive activity
8
activity mixture
8
eradicative synergism
8
inhibiting lesion
8
synergism
4
synergism mixtures
4

Similar Publications

HR/HER2-low breast cancer is a significant subgroup of conventional HR/HER2-negative breast cancer, and combination of CDK4/6 inhibitor and endocrine therapy is the standard first-line and second-line treatments for advanced HR/HER2-low breast cancer. Nevertheless, it remains uncertain whether HER2 signaling affects the effectiveness of CDK4/6 inhibitor administered in combination with endocrine therapy for HR/HER2-low breast cancer and suitable intervention measures. This study revealed poor efficacy for CDK4/6 inhibitor combined with endocrine therapy for HR/HER2-low breast cancer in vitro and in vivo models.

View Article and Find Full Text PDF

Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.

View Article and Find Full Text PDF

Combination of paclitaxel with rosiglitazone induces synergistic cytotoxic effects in ovarian cancer cells.

Sci Rep

December 2024

Department of Zoology, Biomedical Technology, Human Genetics, and WBC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.

Ovarian cancer is known to be a challenging disease to detect at an early stage and is a major cause of death among women. The current treatment for ovarian cancer typically involves a combination of surgery and the use of drugs such as platinum-based cytotoxic agents, anti-angiogenic drugs, etc. However, current treatment methods are not always effective in preventing the recurrence of ovarian cancer.

View Article and Find Full Text PDF

The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules.

View Article and Find Full Text PDF

Regulation of Oxygen in the Tumor Microenvironment Synergizes with Immunotherapy to Suppress Tumor Progression.

J Funct Biomater

November 2024

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!