Objective: The conventional registration of PET images of the chest with CT images is performed by rotating and shifting those images while used median lines and contours on axial images as the reference indexes. For the thoracic and the abdominal regions, therefore, the respiratory movements have prevented us from achieving satisfactory levels of registration reproducibility and accuracy. In order to solve this, we have analyzed respiratory movements of the chest and derived an image fusion method.

Methods: Respiratory movements of the lung along each axis (X-axis: left-right, Y-axis: dorsoventral, and Z-axis: craniocaudal) during deep breathing were analyzed using CT-3D images. In addition, respiratory movements of the lung and thorax in the Y-axis and Z-axis directions during deep breathing and at rest were also analyzed by using an MR system that is the non-invasive method and allows for acquiring arbitrary tomographic images. Respiratory movements were compensated for on PET images of the lung. Moving average deviations in the Y-axis and Z-axis directions, which were obtained from the analytical result of respiration (30 samples), were used to derive the compensatory values.

Results: The analysis of CT-3D images showed that the movements in the X-axis direction were negligible. Registration of PET images with CT images was found useful when it performed on the sagittal planes. The analysis of MR images on sagittal planes revealed that the region extending from the apex of the lung to the posterior wall of the lung was useful for reference indexes for registration. The PET image by the compensation of the respiration transfer difference in the pulmonary hilum division was fusion on the CT image. In the pulmonary hilum division, the improvement in the accuracy of 3.6 mm in the dorsoventral and 6.1 mm in the craniocaudal direction was obtained in comparison with the fusion only of the reference index.

Conclusion: The developed image fusion technique compensating the respiratory movements was found to be effective over the region of the hilum of the lung than the conventional technique.

Download full-text PDF

Source

Publication Analysis

Top Keywords

respiratory movements
24
registration pet
12
pet images
12
images
11
images performed
8
reference indexes
8
image fusion
8
movements lung
8
deep breathing
8
ct-3d images
8

Similar Publications

Background: Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.

Methods: We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations.

View Article and Find Full Text PDF

Background/objectives: Low energy availability (LEA) can cause impaired reproductive function, bone health issues, and suppressed immune function, and may result in decreased performance and overall health status. The purpose of this study was to investigate adaptions of body composition, blood status, resting metabolic rate, and endurance performance to gain more comprehensive insights into the symptoms of LEA and the adaptive effects in the athlete population (active women (n = 11) and men (n = 11)).

Methods: Three treatments were defined as 45 (EA45, control), 30 (EA30), and 10 (EA10) kcal/kg FFM/day and randomly assigned.

View Article and Find Full Text PDF

This study aimed to identify if sensor technology could be used to detect sickness-type signs (caused by a live vaccine) in laying hens compared to physiological and clinical sign scoring and behaviour observation. The experiment comprised 5 replicate batches (4 hens and 12 days per batch) using previously non-vaccinated hens ( = 20). Hens were moved on day 1 to a large experimental room with various designated zones (e.

View Article and Find Full Text PDF

: Inadequate dosing and respiratory motion contribute to local recurrence for oligometastatic disease (OMD). While short-term LC rates are well-documented, data on long-term LC remain limited. This study investigated long-term LC after stereotactic body radiotherapy (SBRT), using respiratory motion management techniques.

View Article and Find Full Text PDF

Background: High-intensity exercise is recommended for the pulmonary rehabilitation of patients with chronic obstructive pulmonary disease (COPD); however, it can cause an energy imbalance due to increased energy expenditure. Here, we aimed to explore the effect of reducing exercise intensity on energy balance in patients with COPD experiencing high-intensity training-induced weight loss.

Methods: All participants underwent high-intensity endurance and resistance training for a 2-week preliminary period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!