Evaluation of a high temperature immobilised enzyme reactor for production of non-reducing oligosaccharides.

J Ind Microbiol Biotechnol

Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, via De Crecchio n degrees 7, 80138, Naples, Italy.

Published: May 2003

There is interest in the production of non-reducing carbohydrates due to their potential application in various industrial fields, particularly the food industry. In this paper, we describe the development of an immobilised cell bioprocess for the synthesis of non-reducing maltodextrins at high temperatures. The trehalosyl-dextrins-forming enzyme (TDFE) isolated from the thermoacidophilic archaeon Sulfolobus solfataricus (strain MT4), was recently expressed at high yields in Escherichia coli (strain Rb-791). Here, we evaluate different matrices, such as polyacrylamide gel, crude egg white, chitosan and calcium alginate for their effectiveness in immobilising whole recombinant E. coli cells subjected to prior thermal permeabilisation. Calcium-alginate based gels formed a solid biocatalyst with a good activity yield and the best enzymatic stability at the operating temperature (75 degrees C). Therefore, these beads were used to pack a glass column reactor to perform the bioconversion of interest. Optimal operating parameters were defined in relation to the substrate stream flow-rate and the substrate-to-biocatalyst ratio. The production of trehalosylmaltotetraose from maltohexaose reached equilibrium with a constant of about 2.6 at 75 degrees C. The bioreactor was exploited for production of trehalosylmaltodextrins from a commercial mixture of maltodextrins, achieving a productivity of 106.5 mg ml(-1) h(-1) (g biocatalyst)(-1) with ~40% conversion when using a 30% (w/v) solution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-003-0051-3DOI Listing

Publication Analysis

Top Keywords

production non-reducing
8
evaluation high
4
high temperature
4
temperature immobilised
4
immobilised enzyme
4
enzyme reactor
4
production
4
reactor production
4
non-reducing oligosaccharides
4
oligosaccharides interest
4

Similar Publications

Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.

View Article and Find Full Text PDF

Stability of complex biotherapeutics like monoclonal antibodies is paramount for their safe and efficacious use. Excipients are inactive ingredients that are added to the purified product so as to offer it a stable environment. Trehalose dihydrate is a non-reducing sugar that is commonly used as a stabilizing agent in biotherapeutic formulations under liquid and frozen states.

View Article and Find Full Text PDF

Anterior gradient 2 (AGR2) is a protein disulfide isomerase that is important for protein processing in the endoplasmic reticulum and is essential for mucin production in the digestive and respiratory tracts. Bi-allelic AGR2 variants were recently found to cause recurrent respiratory infections and failure to thrive with or without diarrhea (RIFTD; MIM # 620233), although the mechanisms behind this condition remain unclear. To date, at least 15 patients with homozygous AGR2 variants have been reported.

View Article and Find Full Text PDF

In recent years, immunomodulation by pectin and pectin-derived galacturonic acid oligosaccharides has been the subject of wide-spread scientific research due to the potential of different pectin structures as bioactive biomolecules. Yet, gaps remain in understanding the structure-dependent immunomodulation of galacturonic acid. This study describes in vitro immunomodulatory effects of well-characterized galacturonic acid oligosaccharides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!