After the recognition of nitric oxide (NO) as a messenger molecule in the nervous system, carbon monoxide (CO) has received attention with similar properties. The present study aims to elucidate the effects of CO on synaptosomal dopamine ((3)H-DA) and glutamate ((3)H-Glu) uptake and on cGMP levels; possible interaction between NO and CO systems was also evaluated. Our results provide evidence for the inhibition of DA and Glu uptake by CO in a time-, dose-, and temperature-dependent manner in rat striatum and hippocampus, respectively; the inhibition observed was sexually dimorphic with more pronounced effects in females. Basal cGMP levels were higher in female rats than males in the striatum and exogenous CO increased striatal cGMP levels only in males; no effect of CO was observed in the hippocampus. In vivo nitric oxide synthase (NOS) inhibition increased DA and Glu uptake; however, CO was still effective in inhibiting uptake following NOS inhibiton. Taken together, these findings suggest a role for CO in trans-synaptic regulation through modulation of DA and Glu transporters and of cGMP levels; the effect on cGMP levels is independent of NOS activity and appears to be sexually dimorphic and region specific.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1300132DOI Listing

Publication Analysis

Top Keywords

cgmp levels
24
carbon monoxide
8
uptake cgmp
8
nitric oxide
8
glu uptake
8
sexually dimorphic
8
cgmp
6
levels
6
uptake
5
monoxide dopamine
4

Similar Publications

Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

AriBio Co., Ltd., Seongnam, Korea, Republic of (South).

Background: AR1001 is a specific inhibitor of phosphodiesterase-5 (PDE5), which degrades cyclic guanosine monophosphate (cGMP). cGMP/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling, which is critical for learning and memory processes, is disturbed in Alzheimer's disease (AD). AR1001 at the oral dose of 30 mg QD is currently in a global Phase 3 clinical trial in early AD patients (NCT05531526).

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: Irsenontrine (e2027) is a potent and selective PDE9 inhibitor that increases cellular cGMP which is important for glutamatergic synaptic function. Irsenontrine was investigated to improve cognition in Lewy Body Dementia (LBD; DLB and PDD), and recent phase 2 study data suggests that irsenontrine could be more effective in DLB patients without amyloid copathology. Here, we evaluated differential change from baseline levels in proteins associated with cGMP pathway in DLB participants without amyloid co-pathology (DLB A-) compared to DLB participants with amyloid co-pathology (DLB A+).

View Article and Find Full Text PDF

GATA1-mediated macrophage polarization via TrkB/cGMP-PKG signaling pathway to promote the development of preeclampsia.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, 250012, Shandong, People's Republic of China.

Background: Preeclampsia (PE) is a severe pregnancy complication characterized by hypertension and proteinuria. PE poses a substantial threat to the health of both mothers and fetuses, and currently, there is no definitive treatment available. Recent studies have indicated that the transcription factor GATA1 may be implicated in the pathological processes of PE, but the underlying mechanism remains elusive.

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!