Objective: In vitro studies have indicated that polymorphonuclear leukocytes (PMNs) traverse endothelial cell monolayers via the paracellular pathway (i.e., through endothelial cell-cell junctions. Herein, we assessed whether the adherens junctions (AJs) are disrupted during PMN transendothelial cell migration.

Methods: Human umbilical vein endothelial cells (HUVECs) were grown to confluence on porous membranes and activated with interleukin-1beta, and PMN transendothelial migration was facilitated by formyl-methionyl-leucyl-phenylalanine. Using dual immunofluorescence staining and laser scanning confocal microscopy, we assessed the effects of PMN-endothelial cell adhesive interactions (i.e., adhesion to and emigration across monolayers) on the AJ components vascular endothelial (VE)-cadherin, beta-catenin, alpha-catenin, and gamma-catenin.

Results: In the AJ immediately adjacent to the adherent PMN, there was a loss of staining for some of the AJ components. AJ components further away from HUVEC-PMN adhesive interactions were unaffected. An iterative approach indicated that the four components were sequentially lost from the AJ. beta-catenin was lost first, followed by VE-cadherin, alpha-catenin, and, finally, gamma-catenin. In the absence of PMNs, the cross-linking of VE-cadherin, but not platelet endothelial cell adhesion molecule-1 or intercellular adhesion molecule-1, increased the cytoplasmic accumulation of beta-catenin. During PMN transendothelial migration, all of the junctional components under study were lost at the immediate site of monolayer penetration. Again, at regions removed from the actual site of PMN penetration of the monolayers, the AJ components were unaffected. PMN-induced disorganization of the AJs was partially prevented by an elastase inhibitor.

Conclusions: These findings suggest that adherent PMNs induce a localized, sequential disassembly of AJs, which is partially mediated by PMN-derived elastase and involves the initial loss of an intracellular component of AJs (i.e., beta-catenin).

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.mn.7800185DOI Listing

Publication Analysis

Top Keywords

pmn transendothelial
12
endothelial cell
8
transendothelial migration
8
adhesive interactions
8
monolayers components
8
adhesion molecule-1
8
ajs partially
8
components
7
endothelial
6
pmn
5

Similar Publications

The extravasation of polymorphonuclear neutrophils (PMNs) is a critical component of the innate immune response that involves transendothelial migration (TEM) and interstitial migration. TEM-mediated interactions between PMNs and vascular endothelial cells (VECs) trigger a cascade of biochemical and mechanobiological signals whose effects on interstitial migration are currently unclear. To address this question, we cultured human VECs on a fibronectin-treated transwell insert to model the endothelium and basement membrane, loaded PMN-like differentiated HL60 (dHL-60) cells in the upper chamber of the insert, and collected the PMNs that crossed the membrane-supported monolayer from the lower chamber.

View Article and Find Full Text PDF

Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer.

Cell Oncol (Dordr)

December 2024

Department of Microbiology and Immunology, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.

Purpose: Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear.

View Article and Find Full Text PDF

Unlabelled: Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients.

View Article and Find Full Text PDF

DPP-4 exacerbates LPS-induced endothelial cells inflammation via integrin-α5β1/FAK/AKT signaling.

Exp Cell Res

February 2024

Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China. Electronic address:

Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4.

View Article and Find Full Text PDF

trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing.

Immunity

January 2024

Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA. Electronic address:

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!