Phosphacan, one of the principal proteoglycans in the extracellular matrix of the central nervous system, is implicated in neuron-glia interactions associated with neuronal differentiation and myelination. We report here the identification of a novel truncated form of phosphacan, phosphacan short isoform (PSI), that corresponds to the N-terminal carbonic anhydrase- and fibronectin type III-like domains and half of the spacer region. The novel cDNA transcript was isolated by screening of a neonatal brain cDNA expression library using a polyclonal antibody raised against phosphacan. Expression of this transcript in vivo was confirmed by Northern blot hybridization. Analysis of brain protein extracts reveals the presence of a 90-kDa glycosylated protein in the phosphate-buffered saline-insoluble 100000 x g fraction that reacts with antisera against both phosphacan and a recombinant PSI protein and that has the predicted N-terminal sequence. This protein is post-translationally modified with oligosaccharides, including the HNK-1 epitope, but, unlike phosphacan, it is not a proteoglycan. The expression of the PSI protein varies during central nervous system development in a fashion similar to that observed for phosphacan, being first detected around embryonic day 16 and then showing a dramatic increase in expression to plateau around the second week post-natal. Both the native and recombinant PSI protein can interact with the Ig cell adhesion molecules, F3/contactin and L1, and in neurite outgrowth assays, the PSI protein can promote outgrowth of cortical neurons when used as a coated substrate. Hence, the identification of this novel isoform of phosphacan/receptor protein tyrosine phosphatase-beta provides a new component in cell-cell and cell-extracellular matrix signaling events in which these proteins have been implicated.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M211721200DOI Listing

Publication Analysis

Top Keywords

psi protein
16
protein
9
phosphacan
8
phosphacan short
8
short isoform
8
phosphacan/receptor protein
8
protein tyrosine
8
tyrosine phosphatase-beta
8
neurite outgrowth
8
central nervous
8

Similar Publications

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. In this study, PePpoA and PePpoC proteins were identified in . The deletion of decreased C8 MVOC production in , while they were not detected in the strain ( < 0.

View Article and Find Full Text PDF

Alternative Splicing Landscape in Mouse Skeletal Muscle and Adipose Tissue: Effects of Intermittent Fasting and Exercise.

J Nutr Biochem

December 2024

Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:

Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.

View Article and Find Full Text PDF

Rationalizing the effects of RNA modifications on protein interactions.

Mol Ther Nucleic Acids

December 2024

Centre for Human Technologies (CHT), RNA System Biology Lab, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy.

RNA modifications play a crucial role in regulating gene expression by altering RNA structure and modulating interactions with RNA-binding proteins (RBPs). In this study, we explore the impact of specific RNA chemical modifications-N-methyladenosine (m⁶A), A-to-I editing, and pseudouridine (Ψ)-on RNA secondary structure and protein-RNA interactions. Utilizing genome-wide data, including RNA secondary structure predictions and protein-RNA interaction datasets, we classify proteins into distinct categories based on their binding behaviors: modification specific and structure independent, or modification unspecific and structure dependent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!