The electroconvulsive threshold (ECT) test has been used extensively to determine the protection conferred by antiepileptic drug candidates against induced seizures in rodents. Despite its clinical relevance, the potential of ECT to identify mouse epilepsy models in genetic studies has not been thoroughly assessed. We adopted the ECT test to screen the progeny of ethylnitrosourea treated male C57BL/6J mice. In a small-scale screen, several mutant lines conferring a low threshold to ECT minimal clonic seizures were mapped to the telomeric region of mouse chromosome 2 in independent founder families. This high incidence was suggestive of a single spontaneous event that pre-existed in the founders of mutagenized stock. Genetic and physical mapping led to the discovery that several lines shared a single mutation, Szt1 (seizure threshold-1), consisting of a 300 kb deletion of genomic DNA involving three known genes. Two of these genes, Kcnq2 and Chrna4, are known to be mutated in human epilepsy families. Szt1 homozygotes and heterozygotes display similar phenotypes to those found in the respective Kcnq2 knockout mutant mice, suggesting that Kcnq2 haploinsufficiency is at the root of the Szt1 seizure sensitivity. Our results provide a novel genetic model for epilepsy research and demonstrate that the approach of using ECT to study seizures in mice has the potential to lead to the identification of human epilepsy susceptibility genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddg118 | DOI Listing |
Background: Electroconvulsive therapy (ECT) is a well-established and effective treatment for severe depression and other conditions. Though ECT induces a generalized seizure, it is unclear why seizures are therapeutic. This study analyzed relationships between pre-treatment brain morphology, stimulation dose, and seizure duration to better understand ECT-induced seizures.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency resulting in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity. To determine the optimal frequency for seizure induction, four male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief-pulse right-unilateral ECT and circular-coil-on-vertex MST.
View Article and Find Full Text PDFAnn Gen Psychiatry
January 2025
Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Background: Seizure threshold increases with age and the frequency of electroconvulsive therapy (ECT). Therefore, therapeutic seizures can be difficult to induce, even at maximum stimulus charge with available ECT devices. Such cases are known as difficult-to-induce-seizures electroconvulsive therapy cases (DECs).
View Article and Find Full Text PDFEncephale
November 2024
University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Psychiatry D, Razi Hospital, Manouba, Tunisia.
J ECT
November 2024
Department of Psychiatry and Psychology.
Objective: To describe the immediate clinical outcomes of repetitive transcranial magnetic stimulation (rTMS) in treating long COVID symptoms. Long COVID currently impacts approximately 5.3% of US adults, presenting with persistent fatigue, depression, anxiety, cognitive impairments, and social function decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!