Repair mechanisms for oxidative DNA damage.

Front Biosci

Laboratory of Molecular Gerontology, GRC, National Institute on Aging, IRP, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA.

Published: May 2003

Reactive oxygen species are formed as by-products of mitochondrial aerobic respiration, as induced products upon exposure to certain environmental/exogenous agents (e.g. ionizing radiation), or as intended products during the immune response against invading foreign microbes. Although serving as essential signaling molecules in certain biological processes (e.g. during gene activation responses), these chemicals, particularly during oxidative stress when at excessive concentrations, can react with cellular components, most notably DNA, and in this capacity, promote mutagenesis or cell death, and in turn, human disease. We review here several of the common oxidative DNA damages as well as the DNA repair mechanisms related to maintaining genome integrity, and thus, preventing cancer formation and age-related disease. We focus mainly on participants of the base excision repair (BER) pathway. In brief, the steps of BER include: (a) excision of the damaged base, (b) incision of the DNA backbone at the apurinic/apyrimidinic (AP) site product, (c) removal of the AP terminal fragment, (d) gap-filling synthesis, and (e) ligation of the final nick.

Download full-text PDF

Source
http://dx.doi.org/10.2741/1109DOI Listing

Publication Analysis

Top Keywords

repair mechanisms
8
oxidative dna
8
dna
5
mechanisms oxidative
4
dna damage
4
damage reactive
4
reactive oxygen
4
oxygen species
4
species formed
4
formed by-products
4

Similar Publications

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!