A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic AMP-responsive transcription factor in the rat hippocampus.

Neuroscience

Laboratoire Développement et Vieillissement du Système Nerveux UMR 7102 CNRS-UPMC (Neurobiologie des Processus Adaptatifs), Université P & M Curie, 9 Quai Saint-Bernard, Bâtiment B, 4e Etage, Boîte 14, 75005 Paris, France.

Published: June 2003

Brain-derived neurotrophic factor (BDNF) plays fundamental roles in synaptic plasticity in rat hippocampus. Recently, using rat hippocampal slices, we found that BDNF induces activation of calcium/calmodulin-dependent protein kinase 2 (CaMKII), a critical mediator of synaptic plasticity. CaMKII in turn activates the p38 subfamily of mitogen-activated protein kinases (MAPK) and its downstream effector, MAPK-activated protein kinase 2 (MAPKAPK-2). Herein, we determined whether some kinases of this pathway connect BDNF to the cyclic AMP response element -binding protein (CREB), a transcription factor also involved in plasticity and survival. Crude cytosolic and nuclear fractions were prepared from hippocampal slices of adult rat, and then kinase involvement in CREB phosphorylation was studied with a combination of pharmacologic inhibition and antibody depletion. In addition, the regional localization of this signaling pathway was immunohistochemically investigated. We show that: (i). the BDNF-stimulated CaMKII cascade phosphorylates the key positive regulatory site of CREB via its end MAPKAPK-2 component; (ii). this process appears to be highly localized in the outermost cell layer of the dentate gyrus. The present findings suggest that CaMKII is involved in neurotrophic-dependent activation of CREB in the dentate gyrus. Such a signaling process could be important for controlling synaptic plasticity in this major area for the afferent inputs to the hippocampal formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(02)00963-6DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
brain-derived neurotrophic
8
neurotrophic factor
8
transcription factor
8
rat hippocampus
8
hippocampal slices
8
protein kinase
8
dentate gyrus
8
calcium/calmodulin kinase
4
kinase pathway
4

Similar Publications

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative.

View Article and Find Full Text PDF

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!