Nineteen novel potential self-immolative prodrugs and their corresponding drugs have been synthesized for gene-directed enzyme prodrug therapy (GDEPT) with carboxypeptidase G2 (CPG2) as the activating enzyme. The compounds are derived from o- and p-amino and p-methylamino aniline nitrogen mustards. Their aqueous stability, kinetics of drug release by CPG2, and cytotoxicity in the colon carcinoma cell line WiDr, expressing either surface-tethered CPG2 (stCPG2(Q)3) or control beta-galactosidase, are assessed. The effect of various structural features on stability, kinetics of activation, and biological activity is discussed. The p-methylamino prodrugs are the most stable compounds from this series, with the largest cytotoxicity differentials between CPG2-expressing and nonexpressing cells. The most potent compounds in all series are prodrugs of bis-iodo nitrogen mustards. 4-[N-[4'-Bis(2' '-iodoethyl)aminophenyl]-N'-methylcarbamoyloxymethyl]phenylcarbamoyl-l-glutamic acid, compound 39b, is 124-fold more cytotoxic to WiDr cells expressing CPG2 than to cells expressing beta-galactosidase. An additional six compounds show better cytotoxicity differential than the published N-[4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl]-l-glutamic acid (CMDA) prodrug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm020462i | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!