New directions in photodynamic therapy.

Cell Mol Biol (Noisy-le-grand)

Department of Chemistry and Chemical Engineering, The Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4.

Published: December 2002

Photodynamic therapy (PDT), a treatment approach that makes use of a photosensitizer to generate a localized toxic species in diseased tissue, has recently become an approved treatment modality. So far, however, only a handful of photosensitizers have received regulatory approval and for a small number of diseases. This chapter outlines the major limitations of PDT and speculates on the possible improvements that are required in order to advance PDT to a front line therapy. Seven areas of improvements are discussed: drug selectivity, drug delivery, light delivery, combination therapies, pigmented tumors, other potential uses, and protocol optimization. For each area, current limitations are discussed, and further required studies are recommended.

Download full-text PDF

Source

Publication Analysis

Top Keywords

photodynamic therapy
8
directions photodynamic
4
therapy photodynamic
4
therapy pdt
4
pdt treatment
4
treatment approach
4
approach photosensitizer
4
photosensitizer generate
4
generate localized
4
localized toxic
4

Similar Publications

Human papillomavirus (HPV) infections rank as the most prevalent sexually transmitted infections globally. The Brazilian Ministry of Health recommends the topical use of 70%-90% trichloroacetic acid (TAA) for treating condyloma acuminata, yet this method suffers from a high recurrence rate of 36% and requires roughly six applications. Topical photodynamic therapy (PDT) has shown effectiveness in targeting subclinical lesions, but it also necessitates multiple sessions for complete lesion clearance.

View Article and Find Full Text PDF

Applications of polymeric nanoparticles in drug delivery for glioblastoma.

Front Pharmacol

January 2025

Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China.

Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating innovative therapeutic approaches. Polymer-based nanotechnology has emerged as a promising solution, offering precise drug delivery, enhanced blood-brain barrier (BBB) penetration, and adaptability to the tumor microenvironment (TME). This review explores the diverse applications of polymeric nanoparticles (NPs) in GBM treatment, including delivery of chemotherapeutics, targeted therapeutics, immunotherapeutics, and other agents for radiosensitization and photodynamic therapy.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has emerged as an innovative approach in cancer treatment, effectively inducing tumor cell death through light-triggered reactive oxygen species (ROS) generation. Additionally, PDT can also trigger antitumor immune responses, thereby reducing the risk of postoperative tumor recurrence. However, the development of highly efficient photosensitizers aimed at activating immune responses for comprehensive tumor eradication remains at an early stage.

View Article and Find Full Text PDF

In this study, the in vitro photodynamic therapy (PDT) activity of two zinc phthalocyanines (ZnPc1 and ZnPc2) was systematically examined in human umbilical vein endothelial cells, focusing on PDT-induced cytotoxicity, reactive oxygen species (ROS) generation, and inhibition of angiogenic processes. Both the ZnPcs demonstrated minimal cytotoxicity in the absence of light, confirming their safety as photosensitizers. ZnPc-PDT led to significant cell death via apoptosis.

View Article and Find Full Text PDF

Toluidine blue O demethylated photoproducts as type II photosensitizers.

Photochem Photobiol

January 2025

Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama.

Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!